Essential Math For Data Science

Essential Math For Data Science Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Essential Math For Data Science book. This book definitely worth reading, it is an incredibly well-written.

Essential Math for Data Science

Author : Thomas Nield
Publisher : "O'Reilly Media, Inc."
Page : 350 pages
File Size : 46,8 Mb
Release : 2022-05-26
Category : Computers
ISBN : 9781098102906

Get Book

Essential Math for Data Science by Thomas Nield Pdf

Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you'll also gain practical insights into the state of data science and how to use those insights to maximize your career. Learn how to: Use Python code and libraries like SymPy, NumPy, and scikit-learn to explore essential mathematical concepts like calculus, linear algebra, statistics, and machine learning Understand techniques like linear regression, logistic regression, and neural networks in plain English, with minimal mathematical notation and jargon Perform descriptive statistics and hypothesis testing on a dataset to interpret p-values and statistical significance Manipulate vectors and matrices and perform matrix decomposition Integrate and build upon incremental knowledge of calculus, probability, statistics, and linear algebra, and apply it to regression models including neural networks Navigate practically through a data science career and avoid common pitfalls, assumptions, and biases while tuning your skill set to stand out in the job market

Mathematics for Machine Learning

Author : Marc Peter Deisenroth,A. Aldo Faisal,Cheng Soon Ong
Publisher : Cambridge University Press
Page : 391 pages
File Size : 54,8 Mb
Release : 2020-04-23
Category : Computers
ISBN : 9781108470049

Get Book

Mathematics for Machine Learning by Marc Peter Deisenroth,A. Aldo Faisal,Cheng Soon Ong Pdf

Distills key concepts from linear algebra, geometry, matrices, calculus, optimization, probability and statistics that are used in machine learning.

Mathematical Foundations for Data Analysis

Author : Jeff M. Phillips
Publisher : Springer Nature
Page : 299 pages
File Size : 44,6 Mb
Release : 2021-03-29
Category : Mathematics
ISBN : 9783030623418

Get Book

Mathematical Foundations for Data Analysis by Jeff M. Phillips Pdf

This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra. Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques.

Essential Math for Data Science

Author : Thomas Nield
Publisher : O'Reilly Media
Page : 350 pages
File Size : 43,5 Mb
Release : 2022-06-30
Category : Computers
ISBN : 1098102932

Get Book

Essential Math for Data Science by Thomas Nield Pdf

To succeed in data science you need some math proficiency. But not just any math. This common-sense guide provides a clear, plain English survey of the math you'll need in data science, including probability, statistics, hypothesis testing, linear algebra, machine learning, and calculus. Practical examples with Python code will help you see how the math applies to the work you'll be doing, providing a clear understanding of how concepts work under the hood while connecting them to applications like machine learning. You'll get a solid foundation in the math essential for data science, but more importantly, you'll be able to use it to: Recognize the nuances and pitfalls of probability math Master statistics and hypothesis testing (and avoid common pitfalls) Discover practical applications of probability, statistics, calculus, and machine learning Intuitively understand linear algebra as a transformation of space, not just grids of numbers being multiplied and added Perform calculus derivatives and integrals completely from scratch in Python Apply what you've learned to machine learning, including linear regression, logistic regression, and neural networks

Math for Programmers

Author : Paul Orland
Publisher : Manning Publications
Page : 686 pages
File Size : 49,9 Mb
Release : 2021-01-12
Category : Computers
ISBN : 9781617295355

Get Book

Math for Programmers by Paul Orland Pdf

In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. Summary To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest programming fields. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code! About the book In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. What's inside Vector geometry for computer graphics Matrices and linear transformations Core concepts from calculus Simulation and optimization Image and audio processing Machine learning algorithms for regression and classification About the reader For programmers with basic skills in algebra. About the author Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land. Table of Contents 1 Learning math with code PART I - VECTORS AND GRAPHICS 2 Drawing with 2D vectors 3 Ascending to the 3D world 4 Transforming vectors and graphics 5 Computing transformations with matrices 6 Generalizing to higher dimensions 7 Solving systems of linear equations PART 2 - CALCULUS AND PHYSICAL SIMULATION 8 Understanding rates of change 9 Simulating moving objects 10 Working with symbolic expressions 11 Simulating force fields 12 Optimizing a physical system 13 Analyzing sound waves with a Fourier series PART 3 - MACHINE LEARNING APPLICATIONS 14 Fitting functions to data 15 Classifying data with logistic regression 16 Training neural networks

Data Science and Machine Learning

Author : Dirk P. Kroese,Zdravko Botev,Thomas Taimre,Radislav Vaisman
Publisher : CRC Press
Page : 538 pages
File Size : 55,8 Mb
Release : 2019-11-20
Category : Business & Economics
ISBN : 9781000730777

Get Book

Data Science and Machine Learning by Dirk P. Kroese,Zdravko Botev,Thomas Taimre,Radislav Vaisman Pdf

Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

Practical Statistics for Data Scientists

Author : Peter Bruce,Andrew Bruce
Publisher : "O'Reilly Media, Inc."
Page : 395 pages
File Size : 43,9 Mb
Release : 2017-05-10
Category : Computers
ISBN : 9781491952917

Get Book

Practical Statistics for Data Scientists by Peter Bruce,Andrew Bruce Pdf

Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data

Essential Statistics for Non-STEM Data Analysts

Author : Rongpeng Li
Publisher : Packt Publishing Ltd
Page : 393 pages
File Size : 47,8 Mb
Release : 2020-11-12
Category : Computers
ISBN : 9781838987565

Get Book

Essential Statistics for Non-STEM Data Analysts by Rongpeng Li Pdf

Reinforce your understanding of data science and data analysis from a statistical perspective to extract meaningful insights from your data using Python programming Key FeaturesWork your way through the entire data analysis pipeline with statistics concerns in mind to make reasonable decisionsUnderstand how various data science algorithms functionBuild a solid foundation in statistics for data science and machine learning using Python-based examplesBook Description Statistics remain the backbone of modern analysis tasks, helping you to interpret the results produced by data science pipelines. This book is a detailed guide covering the math and various statistical methods required for undertaking data science tasks. The book starts by showing you how to preprocess data and inspect distributions and correlations from a statistical perspective. You’ll then get to grips with the fundamentals of statistical analysis and apply its concepts to real-world datasets. As you advance, you’ll find out how statistical concepts emerge from different stages of data science pipelines, understand the summary of datasets in the language of statistics, and use it to build a solid foundation for robust data products such as explanatory models and predictive models. Once you’ve uncovered the working mechanism of data science algorithms, you’ll cover essential concepts for efficient data collection, cleaning, mining, visualization, and analysis. Finally, you’ll implement statistical methods in key machine learning tasks such as classification, regression, tree-based methods, and ensemble learning. By the end of this Essential Statistics for Non-STEM Data Analysts book, you’ll have learned how to build and present a self-contained, statistics-backed data product to meet your business goals. What you will learnFind out how to grab and load data into an analysis environmentPerform descriptive analysis to extract meaningful summaries from dataDiscover probability, parameter estimation, hypothesis tests, and experiment design best practicesGet to grips with resampling and bootstrapping in PythonDelve into statistical tests with variance analysis, time series analysis, and A/B test examplesUnderstand the statistics behind popular machine learning algorithmsAnswer questions on statistics for data scientist interviewsWho this book is for This book is an entry-level guide for data science enthusiasts, data analysts, and anyone starting out in the field of data science and looking to learn the essential statistical concepts with the help of simple explanations and examples. If you’re a developer or student with a non-mathematical background, you’ll find this book useful. Working knowledge of the Python programming language is required.

Foundations of Data Science

Author : Avrim Blum,John Hopcroft,Ravindran Kannan
Publisher : Cambridge University Press
Page : 433 pages
File Size : 41,7 Mb
Release : 2020-01-23
Category : Computers
ISBN : 9781108485067

Get Book

Foundations of Data Science by Avrim Blum,John Hopcroft,Ravindran Kannan Pdf

Covers mathematical and algorithmic foundations of data science: machine learning, high-dimensional geometry, and analysis of large networks.

High-Dimensional Probability

Author : Roman Vershynin
Publisher : Cambridge University Press
Page : 299 pages
File Size : 47,9 Mb
Release : 2018-09-27
Category : Business & Economics
ISBN : 9781108415194

Get Book

High-Dimensional Probability by Roman Vershynin Pdf

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Guide to Essential Math

Author : Sy M. Blinder
Publisher : Newnes
Page : 320 pages
File Size : 44,9 Mb
Release : 2013-02-14
Category : Mathematics
ISBN : 9780124071582

Get Book

Guide to Essential Math by Sy M. Blinder Pdf

This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly) that is needed to succeed in science courses. The focus is on math actually used in physics, chemistry, and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student's ability to think in mathematical terms and to apply quantitative methods to scientific problems. Detailed illustrations and links to reference material online help further comprehension. The second edition features new problems and illustrations and features expanded chapters on matrix algebra and differential equations. Use of proven pedagogical techniques developed during the author’s 40 years of teaching experience New practice problems and exercises to enhance comprehension Coverage of fairly advanced topics, including vector and matrix algebra, partial differential equations, special functions and complex variables

Essential Math for AI

Author : Hala Nelson
Publisher : "O'Reilly Media, Inc."
Page : 1128 pages
File Size : 46,7 Mb
Release : 2023-01-04
Category : Computers
ISBN : 9781098107581

Get Book

Essential Math for AI by Hala Nelson Pdf

Companies are scrambling to integrate AI into their systems and operations. But to build truly successful solutions, you need a firm grasp of the underlying mathematics. This accessible guide walks you through the math necessary to thrive in the AI field such as focusing on real-world applications rather than dense academic theory. Engineers, data scientists, and students alike will examine mathematical topics critical for AI--including regression, neural networks, optimization, backpropagation, convolution, Markov chains, and more--through popular applications such as computer vision, natural language processing, and automated systems. And supplementary Jupyter notebooks shed light on examples with Python code and visualizations. Whether you're just beginning your career or have years of experience, this book gives you the foundation necessary to dive deeper in the field. Understand the underlying mathematics powering AI systems, including generative adversarial networks, random graphs, large random matrices, mathematical logic, optimal control, and more Learn how to adapt mathematical methods to different applications from completely different fields Gain the mathematical fluency to interpret and explain how AI systems arrive at their decisions

Mathematical Foundations of Big Data Analytics

Author : Vladimir Shikhman,David Müller
Publisher : Springer Nature
Page : 273 pages
File Size : 54,9 Mb
Release : 2021-02-11
Category : Computers
ISBN : 9783662625217

Get Book

Mathematical Foundations of Big Data Analytics by Vladimir Shikhman,David Müller Pdf

In this textbook, basic mathematical models used in Big Data Analytics are presented and application-oriented references to relevant practical issues are made. Necessary mathematical tools are examined and applied to current problems of data analysis, such as brand loyalty, portfolio selection, credit investigation, quality control, product clustering, asset pricing etc. – mainly in an economic context. In addition, we discuss interdisciplinary applications to biology, linguistics, sociology, electrical engineering, computer science and artificial intelligence. For the models, we make use of a wide range of mathematics – from basic disciplines of numerical linear algebra, statistics and optimization to more specialized game, graph and even complexity theories. By doing so, we cover all relevant techniques commonly used in Big Data Analytics.Each chapter starts with a concrete practical problem whose primary aim is to motivate the study of a particular Big Data Analytics technique. Next, mathematical results follow – including important definitions, auxiliary statements and conclusions arising. Case-studies help to deepen the acquired knowledge by applying it in an interdisciplinary context. Exercises serve to improve understanding of the underlying theory. Complete solutions for exercises can be consulted by the interested reader at the end of the textbook; for some which have to be solved numerically, we provide descriptions of algorithms in Python code as supplementary material.This textbook has been recommended and developed for university courses in Germany, Austria and Switzerland.

Data Science from Scratch

Author : Joel Grus
Publisher : "O'Reilly Media, Inc."
Page : 330 pages
File Size : 54,7 Mb
Release : 2015-04-14
Category : Computers
ISBN : 9781491904404

Get Book

Data Science from Scratch by Joel Grus Pdf

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Probability and Statistics for Data Science

Author : Norman Matloff
Publisher : CRC Press
Page : 295 pages
File Size : 53,9 Mb
Release : 2019-06-21
Category : Business & Economics
ISBN : 9780429687112

Get Book

Probability and Statistics for Data Science by Norman Matloff Pdf

Probability and Statistics for Data Science: Math + R + Data covers "math stat"—distributions, expected value, estimation etc.—but takes the phrase "Data Science" in the title quite seriously: * Real datasets are used extensively. * All data analysis is supported by R coding. * Includes many Data Science applications, such as PCA, mixture distributions, random graph models, Hidden Markov models, linear and logistic regression, and neural networks. * Leads the student to think critically about the "how" and "why" of statistics, and to "see the big picture." * Not "theorem/proof"-oriented, but concepts and models are stated in a mathematically precise manner. Prerequisites are calculus, some matrix algebra, and some experience in programming. Norman Matloff is a professor of computer science at the University of California, Davis, and was formerly a statistics professor there. He is on the editorial boards of the Journal of Statistical Software and The R Journal. His book Statistical Regression and Classification: From Linear Models to Machine Learning was the recipient of the Ziegel Award for the best book reviewed in Technometrics in 2017. He is a recipient of his university's Distinguished Teaching Award.