Machine Learning For Health Informatics

Machine Learning For Health Informatics Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Machine Learning For Health Informatics book. This book definitely worth reading, it is an incredibly well-written.

Machine Learning for Health Informatics

Author : Andreas Holzinger
Publisher : Springer
Page : 481 pages
File Size : 46,5 Mb
Release : 2016-12-09
Category : Computers
ISBN : 9783319504780

Get Book

Machine Learning for Health Informatics by Andreas Holzinger Pdf

Machine learning (ML) is the fastest growing field in computer science, and Health Informatics (HI) is amongst the greatest application challenges, providing future benefits in improved medical diagnoses, disease analyses, and pharmaceutical development. However, successful ML for HI needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to visualization. Tackling complex challenges needs both disciplinary excellence and cross-disciplinary networking without any boundaries. Following the HCI-KDD approach, in combining the best of two worlds, it is aimed to support human intelligence with machine intelligence. This state-of-the-art survey is an output of the international HCI-KDD expert network and features 22 carefully selected and peer-reviewed chapters on hot topics in machine learning for health informatics; they discuss open problems and future challenges in order to stimulate further research and international progress in this field.

Deep Learning Techniques for Biomedical and Health Informatics

Author : Basant Agarwal,Valentina Emilia Balas,Lakhmi C. Jain,Ramesh Chandra Poonia,Manisha Sharma
Publisher : Academic Press
Page : 367 pages
File Size : 55,6 Mb
Release : 2020-01-14
Category : Science
ISBN : 9780128190623

Get Book

Deep Learning Techniques for Biomedical and Health Informatics by Basant Agarwal,Valentina Emilia Balas,Lakhmi C. Jain,Ramesh Chandra Poonia,Manisha Sharma Pdf

Deep Learning Techniques for Biomedical and Health Informatics provides readers with the state-of-the-art in deep learning-based methods for biomedical and health informatics. The book covers not only the best-performing methods, it also presents implementation methods. The book includes all the prerequisite methodologies in each chapter so that new researchers and practitioners will find it very useful. Chapters go from basic methodology to advanced methods, including detailed descriptions of proposed approaches and comprehensive critical discussions on experimental results and how they are applied to Biomedical Engineering, Electronic Health Records, and medical image processing. Examines a wide range of Deep Learning applications for Biomedical Engineering and Health Informatics, including Deep Learning for drug discovery, clinical decision support systems, disease diagnosis, prediction and monitoring Discusses Deep Learning applied to Electronic Health Records (EHR), including health data structures and management, deep patient similarity learning, natural language processing, and how to improve clinical decision-making Provides detailed coverage of Deep Learning for medical image processing, including optimizing medical big data, brain image analysis, brain tumor segmentation in MRI imaging, and the future of biomedical image analysis

Machine Learning with Health Care Perspective

Author : Vishal Jain,Jyotir Moy Chatterjee
Publisher : Springer Nature
Page : 418 pages
File Size : 43,6 Mb
Release : 2020-03-09
Category : Technology & Engineering
ISBN : 9783030408503

Get Book

Machine Learning with Health Care Perspective by Vishal Jain,Jyotir Moy Chatterjee Pdf

This unique book introduces a variety of techniques designed to represent, enhance and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. Providing a unique compendium of current and emerging machine learning paradigms for healthcare informatics, it reflects the diversity, complexity, and the depth and breadth of this multi-disciplinary area. Further, it describes techniques for applying machine learning within organizations and explains how to evaluate the efficacy, suitability, and efficiency of such applications. Featuring illustrative case studies, including how chronic disease is being redefined through patient-led data learning, the book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare challenges.

Machine Learning for Non/Less-Invasive Methods in Health Informatics

Author : Kun Qian,Liang Zhang,Kezhi Li,Juan Liu
Publisher : Frontiers Media SA
Page : 174 pages
File Size : 55,7 Mb
Release : 2021-11-26
Category : Medical
ISBN : 9782889717088

Get Book

Machine Learning for Non/Less-Invasive Methods in Health Informatics by Kun Qian,Liang Zhang,Kezhi Li,Juan Liu Pdf

Deep Learning, Machine Learning and IoT in Biomedical and Health Informatics

Author : Sujata Dash,Subhendu Kumar Pani,Joel J. P. C. Rodrigues,Babita Majhi
Publisher : CRC Press
Page : 407 pages
File Size : 52,6 Mb
Release : 2022-02-10
Category : Computers
ISBN : 9781000534054

Get Book

Deep Learning, Machine Learning and IoT in Biomedical and Health Informatics by Sujata Dash,Subhendu Kumar Pani,Joel J. P. C. Rodrigues,Babita Majhi Pdf

Biomedical and Health Informatics is an important field that brings tremendous opportunities and helps address challenges due to an abundance of available biomedical data. This book examines and demonstrates state-of-the-art approaches for IoT and Machine Learning based biomedical and health related applications. This book aims to provide computational methods for accumulating, updating and changing knowledge in intelligent systems and particularly learning mechanisms that help us to induce knowledge from the data. It is helpful in cases where direct algorithmic solutions are unavailable, there is lack of formal models, or the knowledge about the application domain is inadequately defined. In the future IoT has the impending capability to change the way we work and live. These computing methods also play a significant role in design and optimization in diverse engineering disciplines. With the influence and the development of the IoT concept, the need for AI (artificial intelligence) techniques has become more significant than ever. The aim of these techniques is to accept imprecision, uncertainties and approximations to get a rapid solution. However, recent advancements in representation of intelligent IoTsystems generate a more intelligent and robust system providing a human interpretable, low-cost, and approximate solution. Intelligent IoT systems have demonstrated great performance to a variety of areas including big data analytics, time series, biomedical and health informatics. This book will be very beneficial for the new researchers and practitioners working in the biomedical and healthcare fields to quickly know the best performing methods. It will also be suitable for a wide range of readers who may not be scientists but who are also interested in the practice of such areas as medical image retrieval, brain image segmentation, among others. • Discusses deep learning, IoT, machine learning, and biomedical data analysis with broad coverage of basic scientific applications • Presents deep learning and the tremendous improvement in accuracy, robustness, and cross- language generalizability it has over conventional approaches • Discusses various techniques of IoT systems for healthcare data analytics • Provides state-of-the-art methods of deep learning, machine learning and IoT in biomedical and health informatics • Focuses more on the application of algorithms in various real life biomedical and engineering problems

Deep Learning in Biomedical and Health Informatics

Author : M. A. Jabbar,Ajith Abraham,Onur Dogan,Ana Maria Madureira,Sanju Tiwari
Publisher : CRC Press
Page : 224 pages
File Size : 48,6 Mb
Release : 2021-09-26
Category : Computers
ISBN : 9781000429084

Get Book

Deep Learning in Biomedical and Health Informatics by M. A. Jabbar,Ajith Abraham,Onur Dogan,Ana Maria Madureira,Sanju Tiwari Pdf

This book provides a proficient guide on the relationship between Artificial Intelligence (AI) and healthcare and how AI is changing all aspects of the healthcare industry. It also covers how deep learning will help in diagnosis and the prediction of disease spread. The editors present a comprehensive review of research applying deep learning in health informatics in the fields of medical imaging, electronic health records, genomics, and sensing, and highlights various challenges in applying deep learning in health care. This book also includes applications and case studies across all areas of AI in healthcare data. The editors also aim to provide new theories, techniques, developments, and applications of deep learning, and to solve emerging problems in healthcare and other domains. This book is intended for computer scientists, biomedical engineers, and healthcare professionals researching and developing deep learning techniques. In short, the volume : Discusses the relationship between AI and healthcare, and how AI is changing the health care industry. Considers uses of deep learning in diagnosis and prediction of disease spread. Presents a comprehensive review of research applying deep learning in health informatics across multiple fields. Highlights challenges in applying deep learning in the field. Promotes research in ddeep llearning application in understanding the biomedical process. Dr.. M.A. Jabbar is a professor and Head of the Department AI&ML, Vardhaman College of Engineering, Hyderabad, Telangana, India. Prof. (Dr.) Ajith Abraham is the Director of Machine Intelligence Research Labs (MIR Labs), Auburn, Washington, USA. Dr.. Onur Dogan is an assistant professor at İzmir Bakırçay University, Turkey. Prof. Dr. Ana Madureira is the Director of The Interdisciplinary Studies Research Center at Instituto Superior de Engenharia do Porto (ISEP), Portugal. Dr.. Sanju Tiwari is a senior researcher at Universidad Autonoma de Tamaulipas, Mexico.

Computational Intelligence for Machine Learning and Healthcare Informatics

Author : Rajshree Srivastava,Pradeep Kumar Mallick,Siddharth Swarup Rautaray,Manjusha Pandey
Publisher : Walter de Gruyter GmbH & Co KG
Page : 414 pages
File Size : 49,5 Mb
Release : 2020-06-22
Category : Computers
ISBN : 9783110649277

Get Book

Computational Intelligence for Machine Learning and Healthcare Informatics by Rajshree Srivastava,Pradeep Kumar Mallick,Siddharth Swarup Rautaray,Manjusha Pandey Pdf

This book presents a variety of techniques designed to enhance and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. It is intended to provide a unique compendium of current and emerging machine learning paradigms for healthcare informatics, reflecting the diversity, complexity, and depth and breadth of this multi-disciplinary area.

Machine Learning in Healthcare Informatics

Author : Sumeet Dua,U. Rajendra Acharya,Prerna Dua
Publisher : Springer Science & Business Media
Page : 332 pages
File Size : 48,9 Mb
Release : 2013-12-09
Category : Technology & Engineering
ISBN : 9783642400179

Get Book

Machine Learning in Healthcare Informatics by Sumeet Dua,U. Rajendra Acharya,Prerna Dua Pdf

The book is a unique effort to represent a variety of techniques designed to represent, enhance, and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. The book provides a unique compendium of current and emerging machine learning paradigms for healthcare informatics and reflects the diversity, complexity and the depth and breath of this multi-disciplinary area. The integrated, panoramic view of data and machine learning techniques can provide an opportunity for novel clinical insights and discoveries.

Computational Intelligence for Machine Learning and Healthcare Informatics

Author : Rajshree Srivastava,Pradeep Kumar Mallick,Siddharth Swarup Rautaray,Manjusha Pandey
Publisher : Walter de Gruyter GmbH & Co KG
Page : 346 pages
File Size : 51,5 Mb
Release : 2020-06-22
Category : Computers
ISBN : 9783110648195

Get Book

Computational Intelligence for Machine Learning and Healthcare Informatics by Rajshree Srivastava,Pradeep Kumar Mallick,Siddharth Swarup Rautaray,Manjusha Pandey Pdf

This book presents a variety of techniques designed to enhance and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. It is intended to provide a unique compendium of current and emerging machine learning paradigms for healthcare informatics, reflecting the diversity, complexity, and depth and breadth of this multi-disciplinary area.

Handbook of Deep Learning in Biomedical Engineering and Health Informatics

Author : E. Golden Julie,Y. Harold Robinson,S. M. Jaisakthi
Publisher : CRC Press
Page : 366 pages
File Size : 42,5 Mb
Release : 2021-09-22
Category : Medical
ISBN : 9781000370492

Get Book

Handbook of Deep Learning in Biomedical Engineering and Health Informatics by E. Golden Julie,Y. Harold Robinson,S. M. Jaisakthi Pdf

This new volume discusses state-of-the-art deep learning techniques and approaches that can be applied in biomedical systems and health informatics. Deep learning in the biomedical field is an effective method of collecting and analyzing data that can be used for the accurate diagnosis of disease. This volume delves into a variety of applications, techniques, algorithms, platforms, and tools used in this area, such as image segmentation, classification, registration, and computer-aided analysis. The editors proceed on the principle that accurate diagnosis of disease depends on image acquisition and interpretation. There are many methods to get high resolution radiological images, but we are still lacking in automated image interpretation. Currently deep learning techniques are providing a feasible solution for automatic diagnosis of disease with good accuracy. Analyzing clinical data using deep learning techniques enables clinicians to diagnose diseases at an early stage and treat patients more effectively. Chapters explore such approaches as deep learning algorithms, convolutional neural networks and recurrent neural network architecture, image stitching techniques, deep RNN architectures, and more. This volume also depicts how deep learning techniques can be applied for medical diagnostics of several specific health scenarios, such as cancer, COVID-19, acute neurocutaneous syndrome, cardiovascular and neuro diseases, skin lesions and skin cancer, etc. Key features: Introduces important recent technological advancements in the field Describes the various techniques, platforms, and tools used in biomedical deep learning systems Includes informative case studies that help to explain the new technologies Handbook of Deep Learning in Biomedical Engineering and Health Informatics provides a thorough exploration of biomedical systems applied with deep learning techniques and will provide valuable information for researchers, medical and industry practitioners, academicians, and students.

Machine Learning, Big Data, and IoT for Medical Informatics

Author : Pardeep Kumar,Yugal Kumar,Mohamed A. Tawhid
Publisher : Academic Press
Page : 458 pages
File Size : 43,7 Mb
Release : 2021-06-13
Category : Computers
ISBN : 9780128217818

Get Book

Machine Learning, Big Data, and IoT for Medical Informatics by Pardeep Kumar,Yugal Kumar,Mohamed A. Tawhid Pdf

Machine Learning, Big Data, and IoT for Medical Informatics focuses on the latest techniques adopted in the field of medical informatics. In medical informatics, machine learning, big data, and IOT-based techniques play a significant role in disease diagnosis and its prediction. In the medical field, the structure of data is equally important for accurate predictive analytics due to heterogeneity of data such as ECG data, X-ray data, and image data. Thus, this book focuses on the usability of machine learning, big data, and IOT-based techniques in handling structured and unstructured data. It also emphasizes on the privacy preservation techniques of medical data. This volume can be used as a reference book for scientists, researchers, practitioners, and academicians working in the field of intelligent medical informatics. In addition, it can also be used as a reference book for both undergraduate and graduate courses such as medical informatics, machine learning, big data, and IoT. Explains the uses of CNN, Deep Learning and extreme machine learning concepts for the design and development of predictive diagnostic systems. Includes several privacy preservation techniques for medical data. Presents the integration of Internet of Things with predictive diagnostic systems for disease diagnosis. Offers case studies and applications relating to machine learning, big data, and health care analysis.

Demystifying Big Data and Machine Learning for Healthcare

Author : Prashant Natarajan,John C. Frenzel,Detlev H. Smaltz
Publisher : CRC Press
Page : 233 pages
File Size : 50,9 Mb
Release : 2017-02-15
Category : Medical
ISBN : 9781315389301

Get Book

Demystifying Big Data and Machine Learning for Healthcare by Prashant Natarajan,John C. Frenzel,Detlev H. Smaltz Pdf

Healthcare transformation requires us to continually look at new and better ways to manage insights – both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization’s day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V’s that matter in healthcare and why Harmonize the 4 C’s across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.

Machine Learning in Medicine

Author : Ayman El-Baz,Jasjit S. Suri
Publisher : CRC Press
Page : 312 pages
File Size : 53,8 Mb
Release : 2021-08-04
Category : Computers
ISBN : 9781351588744

Get Book

Machine Learning in Medicine by Ayman El-Baz,Jasjit S. Suri Pdf

Machine Learning in Medicine covers the state-of-the-art techniques of machine learning and their applications in the medical field. It presents several computer-aided diagnosis (CAD) systems, which have played an important role in the diagnosis of several diseases in the past decade, e.g., cancer detection, resulting in the development of several successful systems. New developments in machine learning may make it possible in the near future to develop machines that are capable of completely performing tasks that currently cannot be completed without human aid, especially in the medical field. This book covers such machines, including convolutional neural networks (CNNs) with different activation functions for small- to medium-size biomedical datasets, detection of abnormal activities stemming from cognitive decline, thermal dose modelling for thermal ablative cancer treatments, dermatological machine learning clinical decision support systems, artificial intelligence-powered ultrasound for diagnosis, practical challenges with possible solutions for machine learning in medical imaging, epilepsy diagnosis from structural MRI, Alzheimer's disease diagnosis, classification of left ventricular hypertrophy, and intelligent medical language understanding. This book will help to advance scientific research within the broad field of machine learning in the medical field. It focuses on major trends and challenges in this area and presents work aimed at identifying new techniques and their use in biomedical analysis, including extensive references at the end of each chapter.

Artificial Intelligence for Innovative Healthcare Informatics

Author : Shabir Ahmad Parah,Mamoon Rashid,Vijayakumar Varadarajan
Publisher : Springer Nature
Page : 320 pages
File Size : 49,9 Mb
Release : 2022-05-23
Category : Medical
ISBN : 9783030965693

Get Book

Artificial Intelligence for Innovative Healthcare Informatics by Shabir Ahmad Parah,Mamoon Rashid,Vijayakumar Varadarajan Pdf

There are several popular books published in Healthcare Computational Informatics like Computational Bioengineering and Bioinformatics (2020), Springer; Health Informatics (2017), Springer; Health Informatics Vision: From Data via Information to Knowledge (2019), IOS Press; Data Analytics in Biomedical Engineering and Healthcare (2020), Elsevier. However, in all these mentioned books, the challenges in Biomedical Imaging are solved in one dimension by use of any specific technology like Image Processing, Machine Learning or Computer Aided Systems. In this book, the book it has been attempted to bring all technologies related to computational analytics together and apply them on Biomedical Imaging.

Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics

Author : Sunil Kumar Dhal,Subhendu Kumar Pani,Srinivas Prasad,Sudhir Kumar Mohapatra
Publisher : John Wiley & Sons
Page : 356 pages
File Size : 52,9 Mb
Release : 2022-06-28
Category : Computers
ISBN : 9781119791737

Get Book

Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics by Sunil Kumar Dhal,Subhendu Kumar Pani,Srinivas Prasad,Sudhir Kumar Mohapatra Pdf

BIG DATA ANALYTICS AND MACHINE INTELLIGENCE IN BIOMEDICAL AND HEALTH INFORMATICS Provides coverage of developments and state-of-the-art methods in the broad and diversified data analytics field and applicable areas such as big data analytics, data mining, and machine intelligence in biomedical and health informatics. The novel applications of Big Data Analytics and machine intelligence in the biomedical and healthcare sector is an emerging field comprising computer science, medicine, biology, natural environmental engineering, and pattern recognition. Biomedical and health informatics is a new era that brings tremendous opportunities and challenges due to the plentifully available biomedical data and the aim is to ensure high-quality and efficient healthcare by analyzing the data. The 12 chapters in??Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics??cover the latest advances and developments in health informatics, data mining, machine learning, and artificial intelligence. They have been organized with respect to the similarity of topics addressed, ranging from issues pertaining to the Internet of Things (IoT) for biomedical engineering and health informatics, computational intelligence for medical data processing, and Internet of Medical Things??(IoMT). New researchers and practitioners working in the field will benefit from reading the book as they can quickly ascertain the best performing methods and compare the different approaches. Audience Researchers and practitioners working in the fields of biomedicine, health informatics, big data analytics, Internet of Things, and machine learning.