Mathematics For Machine Learning

Mathematics For Machine Learning Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Mathematics For Machine Learning book. This book definitely worth reading, it is an incredibly well-written.

Mathematics for Machine Learning

Author : Marc Peter Deisenroth,A. Aldo Faisal,Cheng Soon Ong
Publisher : Cambridge University Press
Page : 391 pages
File Size : 41,8 Mb
Release : 2020-04-23
Category : Computers
ISBN : 9781108470049

DOWNLOAD

Mathematics for Machine Learning Book in PDF, Epub and Kindle

Distills key concepts from linear algebra, geometry, matrices, calculus, optimization, probability and statistics that are used in machine learning.

Mathematics for Machine Learning

Author : Marc Peter Deisenroth,A. Aldo Faisal,Cheng Soon Ong
Publisher : Cambridge University Press
Page : 128 pages
File Size : 53,8 Mb
Release : 2020-04-23
Category : Computers
ISBN : 9781108569323

DOWNLOAD

Mathematics for Machine Learning Book in PDF, Epub and Kindle

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Mathematics for Machine Learning

Author : Marc Peter Deisenroth,A. Aldo Faisal,Cheng Soon Ong
Publisher : Unknown
Page : 128 pages
File Size : 41,8 Mb
Release : 2019-12
Category : Machine learning
ISBN : 1108679935

DOWNLOAD

Mathematics for Machine Learning Book in PDF, Epub and Kindle

Distills key concepts from linear algebra, geometry, matrices, calculus, optimization, probability and statistics that are used in machine learning.

Hands-On Mathematics for Deep Learning

Author : Jay Dawani
Publisher : Packt Publishing Ltd
Page : 364 pages
File Size : 46,9 Mb
Release : 2020-06-12
Category : Computers
ISBN : 9781838641849

DOWNLOAD

Hands-On Mathematics for Deep Learning Book in PDF, Epub and Kindle

A comprehensive guide to getting well-versed with the mathematical techniques for building modern deep learning architectures Key Features Understand linear algebra, calculus, gradient algorithms, and other concepts essential for training deep neural networks Learn the mathematical concepts needed to understand how deep learning models function Use deep learning for solving problems related to vision, image, text, and sequence applications Book Description Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application. By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL. What you will learn Understand the key mathematical concepts for building neural network models Discover core multivariable calculus concepts Improve the performance of deep learning models using optimization techniques Cover optimization algorithms, from basic stochastic gradient descent (SGD) to the advanced Adam optimizer Understand computational graphs and their importance in DL Explore the backpropagation algorithm to reduce output error Cover DL algorithms such as convolutional neural networks (CNNs), sequence models, and generative adversarial networks (GANs) Who this book is for This book is for data scientists, machine learning developers, aspiring deep learning developers, or anyone who wants to understand the foundation of deep learning by learning the math behind it. Working knowledge of the Python programming language and machine learning basics is required.

Machine Learning

Author : Paul Wilmott
Publisher : Unknown
Page : 242 pages
File Size : 43,6 Mb
Release : 2019-05-20
Category : Electronic
ISBN : 1916081606

DOWNLOAD

Machine Learning Book in PDF, Epub and Kindle

Machine Learning: An Applied Mathematics Introduction covers the essential mathematics behind all of the following topics - K Nearest Neighbours; K Means Clustering; Naïve Bayes Classifier; Regression Methods; Support Vector Machines; Self-Organizing Maps; Decision Trees; Neural Networks; Reinforcement Learning

Mathematics and Programming for Machine Learning with R

Author : William B. Claster
Publisher : CRC Press
Page : 408 pages
File Size : 40,8 Mb
Release : 2020-10-26
Category : Computers
ISBN : 9781000196979

DOWNLOAD

Mathematics and Programming for Machine Learning with R Book in PDF, Epub and Kindle

Based on the author’s experience in teaching data science for more than 10 years, Mathematics and Programming for Machine Learning with R: From the Ground Up reveals how machine learning algorithms do their magic and explains how these algorithms can be implemented in code. It is designed to provide readers with an understanding of the reasoning behind machine learning algorithms as well as how to program them. Written for novice programmers, the book progresses step-by-step, providing the coding skills needed to implement machine learning algorithms in R. The book begins with simple implementations and fundamental concepts of logic, sets, and probability before moving to the coverage of powerful deep learning algorithms. The first eight chapters deal with probability-based machine learning algorithms, and the last eight chapters deal with machine learning based on artificial neural networks. The first half of the book does not require mathematical sophistication, although familiarity with probability and statistics would be helpful. The second half assumes the reader is familiar with at least one semester of calculus. The text guides novice R programmers through algorithms and their application and along the way; the reader gains programming confidence in tackling advanced R programming challenges. Highlights of the book include: More than 400 exercises A strong emphasis on improving programming skills and guiding beginners to the implementation of full-fledged algorithms Coverage of fundamental computer and mathematical concepts including logic, sets, and probability In-depth explanations of machine learning algorithms

Math for Deep Learning

Author : Ronald T. Kneusel
Publisher : No Starch Press
Page : 344 pages
File Size : 43,9 Mb
Release : 2021-11-23
Category : Computers
ISBN : 9781718501911

DOWNLOAD

Math for Deep Learning Book in PDF, Epub and Kindle

Math for Deep Learning provides the essential math you need to understand deep learning discussions, explore more complex implementations, and better use the deep learning toolkits. With Math for Deep Learning, you'll learn the essential mathematics used by and as a background for deep learning. You’ll work through Python examples to learn key deep learning related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus as well as how to implement data flow in a neural network, backpropagation, and gradient descent. You’ll also use Python to work through the mathematics that underlies those algorithms and even build a fully-functional neural network. In addition you’ll find coverage of gradient descent including variations commonly used by the deep learning community: SGD, Adam, RMSprop, and Adagrad/Adadelta.

Data Science and Machine Learning

Author : Dirk P. Kroese,Zdravko Botev,Thomas Taimre,Radislav Vaisman
Publisher : CRC Press
Page : 538 pages
File Size : 44,6 Mb
Release : 2019-11-20
Category : Business & Economics
ISBN : 9781000730777

DOWNLOAD

Data Science and Machine Learning Book in PDF, Epub and Kindle

"This textbook is a well-rounded, rigorous, and informative work presenting the mathematics behind modern machine learning techniques. It hits all the right notes: the choice of topics is up-to-date and perfect for a course on data science for mathematics students at the advanced undergraduate or early graduate level. This book fills a sorely-needed gap in the existing literature by not sacrificing depth for breadth, presenting proofs of major theorems and subsequent derivations, as well as providing a copious amount of Python code. I only wish a book like this had been around when I first began my journey!" -Nicholas Hoell, University of Toronto "This is a well-written book that provides a deeper dive into data-scientific methods than many introductory texts. The writing is clear, and the text logically builds up regularization, classification, and decision trees. Compared to its probable competitors, it carves out a unique niche. -Adam Loy, Carleton College The purpose of Data Science and Machine Learning: Mathematical and Statistical Methods is to provide an accessible, yet comprehensive textbook intended for students interested in gaining a better understanding of the mathematics and statistics that underpin the rich variety of ideas and machine learning algorithms in data science. Key Features: Focuses on mathematical understanding. Presentation is self-contained, accessible, and comprehensive. Extensive list of exercises and worked-out examples. Many concrete algorithms with Python code. Full color throughout. Further Resources can be found on the authors website: https://github.com/DSML-book/Lectures

Machine Learning with Spark - Second Edition

Author : Rajdeep Dua,Manpreet Singh Ghotra,Nick Pentreath
Publisher : Unknown
Page : 572 pages
File Size : 49,7 Mb
Release : 2016-10-31
Category : Electronic
ISBN : 1785889931

DOWNLOAD

Machine Learning with Spark - Second Edition Book in PDF, Epub and Kindle

Develop intelligent machine learning systems with SparkAbout This Book*Get to the grips with the latest version of Apache Spark*Utilize Spark's machine learning library to implement predictive analytics*Leverage Spark's powerful tools to load, analyze, clean, and transform your dataWho This Book Is ForIf you have a basic knowledge of machine learning and want to implement various machine-learning concepts in the context of Spark ML, this book is for you. You should be well versed with the Scala and Python languages.What You Will Learn*Get hands-on with the latest version of Spark ML*Create your first Spark program with Scala and Python*Set up and configure a development environment for Spark on your own computer, as well as on Amazon EC2*Access public machine learning datasets and use Spark to load, process, clean, and transform data*Use Spark's machine learning library to implement programs by utilizing well-known machine learning models*Deal with large-scale text data, including feature extraction and using text data as input to your machine learning models*Write Spark functions to evaluate the performance of your machine learning modelsIn DetailSpark ML is the machine learning module of Spark. It uses in-memory RDDs to process machine learning models faster for clustering, classification, and regression.This book will teach you about popular machine learning algorithms and their implementation. You will learn how various machine learning concepts are implemented in the context of Spark ML. You will start by installing Spark in a single and multinode cluster. Next you'll see how to execute Scala and Python based programs for Spark ML. Then we will take a few datasets and go deeper into clustering, classification, and regression. Toward the end, we will also cover text processing using Spark ML.Once you have learned the concepts, they can be applied to implement algorithms in either green-field implementations or to migrate existing systems to this new platform. You can migrate from Mahout or Scikit to use Spark ML.

Math for Machine Learning

Author : Richard Han
Publisher : Unknown
Page : 154 pages
File Size : 45,9 Mb
Release : 2018-07-12
Category : Mathematics
ISBN : 057851270X

DOWNLOAD

Math for Machine Learning Book in PDF, Epub and Kindle

This book explains the math behind machine learning using simple but concrete examples. This book will get you started in machine learning in a smooth and natural way, preparing you for more advanced topics and dispelling the belief that machine learning is complicated, difficult, and intimidating.

Linear Algebra and Optimization for Machine Learning

Author : Charu C. Aggarwal
Publisher : Springer Nature
Page : 495 pages
File Size : 41,9 Mb
Release : 2020-05-13
Category : Computers
ISBN : 9783030403447

DOWNLOAD

Linear Algebra and Optimization for Machine Learning Book in PDF, Epub and Kindle

This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout this text book together with access to a solution’s manual. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.

Mathematical Theories of Machine Learning - Theory and Applications

Author : Bin Shi,S. S. Iyengar
Publisher : Springer
Page : 133 pages
File Size : 46,5 Mb
Release : 2019-06-12
Category : Technology & Engineering
ISBN : 9783030170769

DOWNLOAD

Mathematical Theories of Machine Learning - Theory and Applications Book in PDF, Epub and Kindle

This book studies mathematical theories of machine learning. The first part of the book explores the optimality and adaptivity of choosing step sizes of gradient descent for escaping strict saddle points in non-convex optimization problems. In the second part, the authors propose algorithms to find local minima in nonconvex optimization and to obtain global minima in some degree from the Newton Second Law without friction. In the third part, the authors study the problem of subspace clustering with noisy and missing data, which is a problem well-motivated by practical applications data subject to stochastic Gaussian noise and/or incomplete data with uniformly missing entries. In the last part, the authors introduce an novel VAR model with Elastic-Net regularization and its equivalent Bayesian model allowing for both a stable sparsity and a group selection.

Deep Learning

Author : Ian Goodfellow,Yoshua Bengio,Aaron Courville
Publisher : MIT Press
Page : 800 pages
File Size : 47,8 Mb
Release : 2016-11-10
Category : Computers
ISBN : 9780262337373

DOWNLOAD

Deep Learning Book in PDF, Epub and Kindle

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Math and Architectures of Deep Learning

Author : Krishnendu Chaudhury
Publisher : Manning
Page : 450 pages
File Size : 50,5 Mb
Release : 2022-07-26
Category : Computers
ISBN : 1617296481

DOWNLOAD

Math and Architectures of Deep Learning Book in PDF, Epub and Kindle

Math and Architectures of Deep Learning sets out the foundations of DL usefully and accessibly to working practitioners. Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical implementations in Python and PyTorch. You’ll peer inside the “black box” to understand how your code is working, and learn to comprehend cutting-edge research you can turn into practical applications. Math and Architectures of Deep Learning sets out the foundations of DL usefully and accessibly to working practitioners. Each chapter explores a new fundamental DL concept or architectural pattern, explaining the underpinning mathematics and demonstrating how they work in practice with well-annotated Python code. You’ll start with a primer of basic algebra, calculus, and statistics, working your way up to state-of-the-art DL paradigms taken from the latest research. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

Mathematical Analysis for Machine Learning and Data Mining

Author : Simovici Dan A
Publisher : World Scientific
Page : 984 pages
File Size : 54,8 Mb
Release : 2018-05-21
Category : Computers
ISBN : 9789813229709

DOWNLOAD

Mathematical Analysis for Machine Learning and Data Mining Book in PDF, Epub and Kindle

This compendium provides a self-contained introduction to mathematical analysis in the field of machine learning and data mining. The mathematical analysis component of the typical mathematical curriculum for computer science students omits these very important ideas and techniques which are indispensable for approaching specialized area of machine learning centered around optimization such as support vector machines, neural networks, various types of regression, feature selection, and clustering. The book is of special interest to researchers and graduate students who will benefit from these application areas discussed in the book.