Structural Concrete Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Structural Concrete book. This book definitely worth reading, it is an incredibly well-written.
Structural Concrete by M. Nadim Hassoun,Akthem Al-Manaseer Pdf
The most up to date structural concrete text, with the latest ACI revisions Structural Concrete is the bestselling text on concrete structural design and analysis, providing the latest information and clear explanation in an easy to understand style. Newly updated to reflect the latest ACI 318-14 code, this sixth edition emphasizes a conceptual understanding of the subject, and builds the student's body of knowledge by presenting design methods alongside relevant standards and code. Numerous examples and practice problems help readers grasp the real-world application of the industry's best practices, with explanations and insight on the extensive ACI revision. Each chapter features examples using SI units and US-SI conversion factors, and SI unit design tables are included for reference. Exceptional weather-resistance and stability make concrete a preferred construction material for most parts of the world. For civil and structural engineering applications, rebar and steel beams are generally added during casting to provide additional support. Pre-cast concrete is becoming increasingly common, allowing better quality control, the use of special admixtures, and the production of innovative shapes that would be too complex to construct on site. This book provides complete guidance toward all aspects of reinforced concrete design, including the ACI revisions that address these new practices. Review the properties of reinforced concrete, with models for shrink and creep Understand shear, diagonal tension, axial loading, and torsion Learn planning considerations for reinforced beams and strut and tie Design retaining walls, footings, slender columns, stairs, and more The American Concrete Institute updates structural concrete code approximately every three years, and it's critical that students learn the most recent standards and best practices. Structural Concrete provides the most up to date information, with intuitive explanation and detailed guidance.
Structural Concrete examines the behavior of reinforced and prestressed concrete structures under working load and ultimate load conditions. This eight-chapter text deals first with the analysis of concrete structures as a particular branch of structural mechanics. Other chapters explore the empirical methods and the practical design and detailing procedures. Considerable chapters describe the mechanical behavior of structural concrete, with a particular emphasis on the elastic behavior. The final chapters examine the behavior of continuous beams, frames, and slabs. These chapters also look into the models for structural concrete. This book is intended primarily to undergraduate civil engineering students.
Structural Concrete discusses the design and analysis of reinforced and prestressed concrete structural components and structures. Each of the eight chapters of the book tackles a specific area of concern in structural concrete. The text first deals with the serviceability and safety, and then proceeds to the properties of materials and mix designs. The next two chapters cover reinforced concrete beams and slabs. Chapter 5 discusses column and walls, while Chapter 6 tackles reinforced concrete frames and continuous beams and slabs. The next chapter discusses design structures, while the last chapter covers prestressed concrete. The text will be of great use to undergraduate students of civil and structural engineering. Professionals whose work involves concrete technology will also find the book useful.
Advanced studies on structural concrete contributions to the 1993 Lisbon workshop in tribute to J Ferry Borges by FIB – International Federation for Structural Concrete Pdf
Fibre Reinforced Concrete: From Design to Structural Applications by FIB – International Federation for Structural Concrete Pdf
The first international FRC workshop supported by RILEM and ACI was held in Bergamo (Italy) in 2004. At that time, a lack of specific building codes and standards was identified as the main inhibitor to the application of this technology in engineering practice. The workshop aim was placed on the identification of applications, guidelines, and research needs in order for this advanced technology to be transferred to professional practice. The second international FRC workshop, held in Montreal (Canada) in 2014, was the first ACI-fib joint technical event. Many of the objectives identified in 2004 had been achieved by various groups of researchers who shared a common interest in extending the application of FRC materials into the realm of structural engineering and design. The aim of the workshop was to provide the State-of-the-Art on the recent progress that had been made in term of specifications and actual applications for buildings, underground structures, and bridge projects worldwide. The rapid development of codes, the introduction of new materials and the growing interest of the construction industry suggested presenting this forum at closer intervals. In this context, the third international FRC workshop was held in Desenzano (Italy), four years after Montreal. In this first ACI-fib-RILEM joint technical event, the maturity gained through the recent technological developments and large-scale applications were used to show the acceptability of the concrete design using various fibre compositions. The growing interests of civil infrastructure owners in ultra-high-performance fibre-reinforced concrete (UHPFRC) and synthetic fibres in structural applications bring new challenges in terms of concrete technology and design recommendations. In such a short period of time, we have witnessed the proliferation of the use of fibres as structural reinforcement in various applications such as industrial floors, elevated slabs, precast tunnel lining sections, foundations, as well as bridge decks. We are now moving towards addressing many durability-based design requirements by the use of fibres, as well as the general serviceability-based design. However, the possibility of having a residual tensile strength after cracking of the concrete matrix requires a new conceptual approach for a proper design of FRC structural elements. With such a perspective in mind, the aim of FRC2018 workshop was to provide the State-of-the-Art on the recent progress in terms of specifications development, actual applications, and to expose users and researchers to the challenges in the design and construction of a wide variety of structural applications. Considering that at the time of the first workshop, in 2004, no structural codes were available on FRC, we have to recognize the enormous work done by researchers all over the world, who have presented at many FRC events, and convinced code bodies to include FRC among the reliable alternatives for structural applications. This will allow engineers to increasingly utilize FRC with confidence for designing safe and durable structures. Many presentations also clearly showed that FRC is a promising material for efficient rehabilitation of existing infrastructure in a broad spectrum of repair applications. These cases range from sustained gravity loads to harsh environmental conditions and seismic applications, which are some of the broadest ranges of applications in Civil Engineering. The workshop was attended by researchers, designers, owner and government representatives as well as participants from the construction and fibre industries. The presence of people with different expertise provided a unique opportunity to share knowledge and promote collaborative efforts. These interactions are essential for the common goal of making better and sustainable constructions in the near future. The workshop was attended by about 150 participants coming from 30 countries. Researchers from all the continents participated in the workshop, including 24 Ph.D. students, who brought their enthusiasm in FRC structural applications. For this reason, the workshop Co-chairs sincerely thank all the enterprises that sponsored this event. They also extend their appreciation for the support provided by the industry over the last 30 years which allowed research centers to study FRC materials and their properties, and develop applications to making its use more routine and accepted throughout the world. Their important contribution has been essential for moving the knowledge base forward. Finally, we appreciate the enormous support received from all three sponsoring organizations of ACI, fib and Rilem and look forward to paving the path for future collaborations in various areas of common interest so that the developmental work and implementation of new specifications and design procedures can be expedited internationally.
Practical Design of Reinforced Concrete Buildings by Syed Mehdi Ashraf Pdf
This book will provide comprehensive, practical knowledge for the design of reinforced concrete buildings. The approach will be unique as it will focus primarily on the design of various structures and structural elements as done in design offices with an emphasis on compliance with the relevant codes. It will give an overview of the integrated design of buildings and explain the design of various elements such as slabs, beams, columns, walls, and footings. It will be written in easy-to-use format and refer to all the latest relevant American codes of practice (IBC and ASCE) at every stage. The book will compel users to think critically to enhance their intuitive design capabilities.
Design Procedures for the Use of Composites in Strengthening of Reinforced Concrete Structures by Carlo Pellegrino,José Sena-Cruz Pdf
This book analyses the current knowledge on structural behaviour of RC elements and structures strengthened with composite materials (experimental, analytical and numerical approaches for EBR and NSM), particularly in relation to the above topics, and the comparison of the predictions of the current available codes/recommendations/guidelines with selected experimental results. The book shows possible critical issues (discrepancies, lacunae, relevant parameters, test procedures, etc.) related to current code predictions or to evaluate their reliability, in order to develop more uniform methods and basic rules for design and control of FRP strengthened RC structures. General problems/critical issues are clarified on the basis of the actual experiences, detect discrepancies in existing codes, lacunae in knowledge and, concerning these identified subjects, provide proposals for improvements. The book will help to contribute to promote and consolidate a more qualified and conscious approach towards rehabilitation and strengthening existing RC structures with composites and their possible monitoring.
Author : Raju N. Krishna Publisher : New Age International Page : 662 pages File Size : 53,9 Mb Release : 2007 Category : Reinforced concrete construction ISBN : 8122414605
Reinforced Concrete Design: Principles And Practice by Raju N. Krishna Pdf
This Book Systematically Explains The Basic Principles And Techniques Involved In The Design Of Reinforced Concrete Structures. It Exhaustively Covers The First Course On The Subject At B.E./ B.Tech Level.Important Features: * Exposition Is Based On The Latest Indian Standard Code Is: 456-2000. * Limit State Method Emphasized Throughout The Book. * Working Stress Method Also Explained. * Detailing Aspects Of Reinforcement Highlighted. * Incorporates Earthquake Resistant Design. * Includes A Large Number Of Solved Examples, Practice Problems And Illustrations.The Book Would Serve As A Comprehensive Text For Undergraduate Civil Engineering Students. Practising Engineers Would Also Find It A Valuable Reference Source.
Reinforced Concrete Design with FRP Composites by Hota V.S. GangaRao,Narendra Taly,P. V. Vijay Pdf
Although the use of composites has increased in many industrial, commercial, medical, and defense applications, there is a lack of technical literature that examines composites in conjunction with concrete construction. Fulfilling the need for a comprehensive, explicit guide, Reinforced Concrete Design with FRP Composites presents specific informat
The Structural Integrity of Recycled Aggregate Concrete Produced With Fillers and Pozzolans by Paul O. Awoyera,Carlos Thomas,Mehmet Serkan Kirgiz Pdf
The Structural Integrity of Recycled Aggregate Concrete Produced with Fillers and Pozzolans presents a review on the use of by-products, fillers and pozzolanic materials in the development of concrete, with an emphasis on structural integrity. The volume is broken down into key sections, including a review of the types of materials that are used as latent hydraulic supplements, fillers and pozzolans for making recycled aggregate concrete, rheology and hydration phenomenon, the mechanical and microscale nature of concrete, and the impact of fillers and pozzolans on the workability of concrete with case studies. Durability and strength development are also discussed. The final section looks at issues such as performance effect, LCA, environmental impact, sustainability and cost benefit analysis. With detailed case studies throughout, this volume will provide useful information for all stakeholders involved in the built environment, including materials scientists, civil engineers, builders, architects and policymakers. Identifies several potential by-products, fillers and pozzolans for the development of durable concrete Acts as a guidebook for constructors and researchers working in the broad field of material science, engineering and in-situ application Presents the durability properties of concrete made of by-products, fillers and pozzolans
Reinforced Concrete Design to Eurocodes by Prab Bhatt,T.J. MacGinley,Ban Seng Choo Pdf
This fourth edition of a bestselling textbook has been extensively rewritten and expanded in line with the current Eurocodes. It presents the principles of the design of concrete elements and of complete structures, with practical illustrations of the theory. It explains the background to the Eurocode rules and goes beyond the core topics to cover the design of foundations, retaining walls, and water retaining structures. The text includes more than sixty worked out design examples and more than six hundred diagrams, plans, and charts. It suitable for civil engineering courses and is a useful reference for practicing engineers.
Seismic Retrofit of Existing Reinforced Concrete Buildings by Stelios Antoniou Pdf
Seismic Retrofit of Existing Reinforced Concrete Buildings Understand the complexities and challenges of retrofitting building infrastructure Across the world, buildings are gradually becoming structurally unsound. Many were constructed before seismic load capacity was a mandatory component of building standards, and were often built with low-quality materials or using unsafe construction practices. Many more are simply aging, with materials degrading, and steel corroding. As a result, efforts are ongoing to retrofit existing structures, and to develop new techniques for assessing and enhancing seismic load capacity in order to create a safer building infrastructure worldwide. Seismic Retrofit of Existing Reinforced Concrete Buildings provides a thorough book-length discussion of these techniques and their applications. Balancing theory and practice, the book provides engineers with a broad base of knowledge from which to approach real-world seismic assessments and retrofitting projects. It incorporates knowledge and experience frequently omitted from the building design process for a fuller account of this critical engineering subfield. Seismic Retrofit of Existing Reinforced Concrete Buildings readers will also find: Detailed treatment of each available strengthening technique, complete with advantages and disadvantages In-depth guidelines to select a specific technique for a given building type and/or engineering scenario Step-by-step guidance through the assessment/retrofitting process Seismic Retrofit of Existing Reinforced Concrete Buildings is an ideal reference for civil and structural engineering professionals and advanced students, particularly those working in seismically active areas.
Corrosion and its Consequences for Reinforced Concrete Structures by Raoul Francois,Stéphane Laurens,Fabrice Deby Pdf
This book serves as an indispensable guide for engineers, scientists and researchers, exploring the fundamental aspects of corrosion in reinforced concrete. Its originality lies in the coupling between the reinforcement corrosion of reinforced concrete and its mechanical behavior.The authors describe the specific theoretical foundations of the corrosion of steel in concrete and its interactions with the structural aspects, including service cracking and defects in the placement of concrete. The book contains a study of the mechanisms of degradation of the mechanical behavior of reinforcements and the reinforced concrete composite, such as reduction of ductility, bearing capacity, redistribution of efforts by formation of plastic hinges and increase in the beam deflection in service. A diagnostic method based on corrosion-induced crack detection is presented in the book, and then paired with a recalculation method which allows us to predict the different aspects of the residual mechanical behavior. Several end-of-life ELS and ELU criteria are described, and the authors propose an approach to estimate the residual lifetime. Finally, the book presents the cathodic protection that allows the progression of corrosion to be contained within the corroded structures. As well as academics, this book is aimed at civil engineers who are faced with the issue of corrosion in aging structures. Explores corrosion in concrete Examines the influence of pre-cracks on corrosion Discusses corrosion diagnostics and corrosion-induced cracks Presents residual mechanical properties of corroded structures: effect of corrosion on steel behavior, load-bearing capacity, yielding capacity, deflection of corroded beams and the effect of corrosion on bond Provides repair and maintenance considerations: cathodic protection and carbon fiber reinforced polymer used to strengthen and restore bearing capacity
Unified Theory of Reinforced Concrete by Thomas T.C. Hsu Pdf
Reinforced concrete structures are subjected to a complex variety of stresses and strains. The four basic actions are bending, axial load, shear, and torsion. Presently, there is no single comprehensive theory for reinforced concrete structural behavior that addresses all of these basic actions and their interactions. Furthermore, there is little consistency among countries around the world in their building codes, especially in the specifications for shear and torsion. Unified Theory of Reinforced Concrete addresses this serious problem by integrating available information with new research data, developing one unified theory of reinforced concrete behavior that embraces and accounts for all four basic actions and their combinations. The theory is presented in a systematic manner, elucidating its five component models from a pedagogical and historical perspective while emphasizing the fundamental principles of equilibrium, compatibility, and the constitutive laws of materials. The significance of relationships between models and their intrinsic consistencies are emphasized. This theory can serve as the foundation on which to build a universal design code that can be adopted internationally. In addition to frames, the book explains the fundamental concept of the design of wall-type and shell-type structures. Unified Theory of Reinforced Concrete will be an important reference for all engineers involved in the design of concrete structures. The book can also serve well as a text for a graduate course in structural engineering.