Computational Chemistry Of Solid State Materials

Computational Chemistry Of Solid State Materials Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Computational Chemistry Of Solid State Materials book. This book definitely worth reading, it is an incredibly well-written.

Computational Chemistry of Solid State Materials

Author : Richard Dronskowski
Publisher : John Wiley & Sons
Page : 300 pages
File Size : 50,9 Mb
Release : 2008-01-08
Category : Science
ISBN : 9783527612291

Get Book

Computational Chemistry of Solid State Materials by Richard Dronskowski Pdf

This is the first book to present both classical and quantum-chemical approaches to computational methods, incorporating the many new developments in this field from the last few years. Written especially for "non"-theoretical readers in a readily comprehensible and implemental style, it includes numerous practical examples of varying degrees of difficulty. Similarly, the use of mathematical equations is reduced to a minimum, focusing only on those important for experimentalists. Backed by many extensive tables containing detailed data for direct use in the calculations, this is the ideal companion for all those wishing to improve their work in solid state research.

Computational Materials Chemistry

Author : L.A. Curtiss,M.S. Gordon
Publisher : Springer Science & Business Media
Page : 381 pages
File Size : 40,8 Mb
Release : 2006-01-16
Category : Technology & Engineering
ISBN : 9781402021176

Get Book

Computational Materials Chemistry by L.A. Curtiss,M.S. Gordon Pdf

As a result of the advancements in algorithms and the huge increase in speed of computers over the past decade, electronic structure calculations have evolved into a valuable tool for characterizing surface species and for elucidating the pathways for their formation and reactivity. It is also now possible to calculate, including electric field effects, STM images for surface structures. To date the calculation of such images has been dominated by density functional methods, primarily because the computational cost of - curate wave-function based calculations using either realistic cluster or slab models would be prohibitive. DFT calculations have proven especially valuable for elucidating chemical processes on silicon and other semiconductor surfaces. However, it is also clear that some of the systems to which DFT methods have been applied have large non-dynamical correlation effects, which may not be properly handled by the current generation of Kohn-Sham-based density functionals. For example, our CASSCF calculations on the Si(001)/acetylene system reveal that at some geometries there is extensive 86 configuration mixing. This, in turn, could signal problems for DFT cal- lations on these systems. Some of these problem systems can be addressed using ONIOM or other “layering” methods, treating the primary region of interest with a CASMP2 or other multireference-based method, and treating the secondary region by a lower level of electronic structure theory or by use of a molecular mechanics method. ACKNOWLEDGEMENTS We wish to thank H. Jónsson, C. Sosa, D. Sorescu, P. Nachtigall, and T. -C.

Chemical Bonding

Author : Richard Dronskowski
Publisher : Walter de Gruyter GmbH & Co KG
Page : 250 pages
File Size : 51,6 Mb
Release : 2023-10-02
Category : Science
ISBN : 9783111167268

Get Book

Chemical Bonding by Richard Dronskowski Pdf

Modern DFT simulations of solids and molecules are typically based on the mighty plane-wave pseudopotential combination. Despite being numerically efficient, it does not allow for chemical conclusions unless the electronic structure is unitarily transformed into atomic orbitals. This primer for chemists and as well for physicists and engineers shows how to simply extract the chemistry and, hence, truly understand a plethora of real-world materials The goal of this humorous primer entertaining to read is to truly serve but not repel the reader. Recent in-person and also virtual summer schools in Europe and Asia have demonstrated the need for such a primer, also to be used for self-training

Computational Pharmaceutical Solid State Chemistry

Author : Yuriy A. Abramov
Publisher : John Wiley & Sons
Page : 450 pages
File Size : 44,9 Mb
Release : 2016-04-18
Category : Science
ISBN : 9781118700747

Get Book

Computational Pharmaceutical Solid State Chemistry by Yuriy A. Abramov Pdf

This book is the first to combine computational material science and modeling of molecular solid states for pharmaceutical industry applications. • Provides descriptive and applied state-of-the-art computational approaches and workflows to guide pharmaceutical solid state chemistry experiments and to support/troubleshoot API solid state selection • Includes real industrial case examples related to application of modeling methods in problem solving • Useful as a supplementary reference/text for undergraduate, graduate and postgraduate students in computational chemistry, pharmaceutical and biotech sciences, and materials science

Treatise on Solid State Chemistry

Author : N. Hannay
Publisher : Springer Science & Business Media
Page : 731 pages
File Size : 49,5 Mb
Release : 2012-12-06
Category : Science
ISBN : 9781468480825

Get Book

Treatise on Solid State Chemistry by N. Hannay Pdf

The last quarter-century has been marked by the extremely rapid growth of the solid-state sciences. They include what is now the largest subfield of physics, and the materials engineering sciences have likewise flourished. And, playing an active role throughout this vast area of science and engineer ing have been very large numbers of chemists. Yet, even though the role of chemistry in the solid-state sciences has been a vital one and the solid-state sciences have, in turn, made enormous contributions to chemical thought, solid-state chemistry has not been recognized by the general body of chemists as a major subfield of chemistry. Solid-state chemistry is not even well defined as to content. Some, for example, would have it include only the quantum chemistry of solids and would reject thermodynamics and phase equilibria; this is nonsense. Solid-state chemistry has many facets, and one of the purposes of this Treatise is to help define the field. Perhaps the most general characteristic of solid-state chemistry, and one which helps differentiate it from solid-state physics, is its focus on the chemical composition and atomic configuration of real solids and on the relationship of composition and structure to the chemical and physical properties of the solid. Real solids are usually extremely complex and exhibit almost infinite variety in their compositional and structural features.

Solid State Materials Chemistry

Author : Patrick M. Woodward,Pavel Karen,John S. O. Evans,Thomas Vogt
Publisher : Cambridge University Press
Page : 709 pages
File Size : 50,8 Mb
Release : 2021-04
Category : Science
ISBN : 9780521873253

Get Book

Solid State Materials Chemistry by Patrick M. Woodward,Pavel Karen,John S. O. Evans,Thomas Vogt Pdf

A modern and thorough treatment of the field for upper-level undergraduate and graduate courses in materials science and chemistry.

Practical Aspects of Computational Chemistry I

Author : Jerzy Leszczynski,Manoj Shukla
Publisher : Springer Science & Business Media
Page : 687 pages
File Size : 47,8 Mb
Release : 2012-01-02
Category : Science
ISBN : 9789400709195

Get Book

Practical Aspects of Computational Chemistry I by Jerzy Leszczynski,Manoj Shukla Pdf

Practical Aspects of Computational Chemistry I: An Overview of the Last Two Decades and Current Trends gathers the advances made within the last 20 years by well-known experts in the area of theoretical and computational chemistry and physics. The title itself reflects the celebration of the twentieth anniversary of the “Conference on Current Trends in Computational Chemistry (CCTCC)” to which all authors have participated and contributed to its success. This volume poses (and answers) important questions of interest to the computational chemistry community and beyond. What is the historical background of the “Structural Chemistry”? Is there any way to avoid the problem of intruder state in the multi-reference formulation? What is the recent progress on multi-reference coupled cluster theory? Starting with a historical account of structural chemistry, the book focuses on the recent advances made in promising theories such as many body Brillouin-Wigner theory, multireference state-specific coupled cluster theory, relativistic effect in chemistry, linear and nonlinear optical properties of molecules, solution to Kohn-Sham problem, electronic structure of solid state materials, development of model core potential, quantum Monte Carlo method, nano and molecular electronics, dynamics of photodimerization and excited states, intermolecular interactions, hydrogen bonding and non-hydrogen bonding interactions, conformational flexibility, metal cations in zeolite catalyst and interaction of nucleic acid bases with minerals. Practical Aspects of Computational Chemistry I: An Overview of the Last Two Decades and Current Trends is aimed at theoretical and computational chemists, physical chemists, materials scientists, and particularly those who are eager to apply computational chemistry methods to problem of chemical and physical importance. This book will provide valuable information to undergraduate, graduate, and PhD students as well as to established researchers.

Quantum Chemistry of Solids

Author : Robert A. Evarestov
Publisher : Springer Science & Business Media
Page : 745 pages
File Size : 42,7 Mb
Release : 2013-01-19
Category : Science
ISBN : 9783642303562

Get Book

Quantum Chemistry of Solids by Robert A. Evarestov Pdf

Quantum Chemistry of Solids delivers a comprehensive account of the main features and possibilities of LCAO methods for the first principles calculations of electronic structure of periodic systems. The first part describes the basic theory underlying the LCAO methods applied to periodic systems and the use of Hartree-Fock(HF), Density Function theory(DFT) and hybrid Hamiltonians. The translation and site symmetry consideration is included to establish connection between k-space solid –state physics and real-space quantum chemistry. The inclusion of electron correlation effects for periodic systems is considered on the basis of localized crystalline orbitals. The possibilities of LCAO methods for chemical bonding analysis in periodic systems are discussed. The second part deals with the applications of LCAO methods for calculations of bulk crystal properties, including magnetic ordering and crystal structure optimization. In the second edition two new chapters are added in the application part II of the book. Chapter 12 deals with the recent LCAO calculations and illustrates the efficiency of the scalar-relativistic LCAO method for solids, containing heavy atoms. Chapter 13 deals with the symmetry properties and the recent applications of LCAO method to inorganic nanotubes. New material is added to chapter 9 devoted to LCAO calculations of perfect-crystal properties. The possibilities of LCAO method for calculation of the high-frequency dielectric constants of crystals and the description of phase transitions in solids are discussed. The efficiency of LCAO method in the quantum-mechanics-molecular dynamics approach to the interpretation of x-ray absorption and EXAFS spectra is illustrated. A new section is devoted to recent LCAO calculations of electronic, vibrational and magnetic properties of tungstates MeWO4 (Me: Fe,Co,Ni,Cu,Zn,Cd).

Handbook of Solid State Chemistry, 6 Volume Set

Author : Richard Dronskowski,Shinichi Kikkawa,Andreas Stein
Publisher : John Wiley & Sons
Page : 3912 pages
File Size : 41,5 Mb
Release : 2017-10-23
Category : Technology & Engineering
ISBN : 9783527325870

Get Book

Handbook of Solid State Chemistry, 6 Volume Set by Richard Dronskowski,Shinichi Kikkawa,Andreas Stein Pdf

This most comprehensive and unrivaled compendium in the field provides an up-to-date account of the chemistry of solids, nanoparticles and hybrid materials. Following a valuable introductory chapter reviewing important synthesis techniques, the handbook presents a series of contributions by about 150 international leading experts -- the "Who's Who" of solid state science. Clearly structured, in six volumes it collates the knowledge available on solid state chemistry, starting from the synthesis, and modern methods of structure determination. Understanding and measuring the physical properties of bulk solids and the theoretical basis of modern computational treatments of solids are given ample space, as are such modern trends as nanoparticles, surface properties and heterogeneous catalysis. Emphasis is placed throughout not only on the design and structure of solids but also on practical applications of these novel materials in real chemical situations.

Energetic Materials

Author : Anonim
Publisher : Elsevier
Page : 487 pages
File Size : 55,5 Mb
Release : 2003-11-25
Category : Business & Economics
ISBN : 9780080530901

Get Book

Energetic Materials by Anonim Pdf

This volume provides an overview of current research and recent advances in the area of energetic materials, focusing on decomposition, crystal and molecular properties. The contents and format reflect the fact that theory, experiment and computation are closely linked in this field. Since chemical decomposition is of fundamental importance in energetic performance, this volume begins with a survey of the decomposition processes of a variety of energetic compounds. This is followed by detailed studies of certain compounds and specific mechanisms, such as nitro/aci-nitro tautomerism. Chapter 6 covers the transition from decomposition to crystal properties, with molecular dynamics being the primary analytical tool. The next several chapters deal with different aspects of the crystalline state, again moving from the general to particular. There is also a discussion of methods for computing gas, liquid and solid phase heats of formation. Finally, the last portion of this volume looks at the potential of high-nitrogen molecules as energetic systems; this has been of considerable interest in recent years.Overall, this volume illustrates the progress that has been made in the field of energetic materials and some of the areas of current activity. It also indicates the challenges involved in characterizing and understanding the properties and behaviour of these compounds. The work is a unique state-of-the-art treatment of the subject, written by pre-eminent researchers in the field. - Overall emphasis is on theory and computation, presented in the context of relevant experimental work- Presents a unique state-of-the-art treatment of the subject- Contributors are preeminent researchers in the field

Turning Points in Solid-state, Materials and Surface State

Author : Kenneth D. M. Harris,Peter P. Edwards,Royal Society of Chemistry (Great Britain)
Publisher : Royal Society of Chemistry
Page : 946 pages
File Size : 51,7 Mb
Release : 2008
Category : Science
ISBN : 9780854041145

Get Book

Turning Points in Solid-state, Materials and Surface State by Kenneth D. M. Harris,Peter P. Edwards,Royal Society of Chemistry (Great Britain) Pdf

The scientific exploration of solid materials represents one of the most important, fascinating and rewarding areas of scientific endeavour in the present day, not only from the viewpoint of advancing fundamental understanding but also from the industrial perspective, given the immense diversity of applications of solid materials across the full range of commercial sectors. Turning Points in Solid-State, Materials and Surface Science provides a state-of-the-art survey of some of the most important recent developments across the spectrum of solid-state, materials and surface sciences, while at the same time reflecting on key turning points in the evolution of this scientific discipline and projecting into the directions for future research progress. The book serves as a timely tribute to the life and work of Professor Sir John Meurig Thomas FRS, who has made monumental contributions to this field of science throughout his distinguished 50-year career in research, during which he has initiated, developed and exploited many important branches of this field. Indeed, the depth and breadth of his contributions towards the evolution and advancement of this scientific discipline, and his critical role in elevating this field to the important position that it now occupies within modern science, are demonstrated recurrently throughout the chapters of this book. Individual chapters are contributed by internationally leading experts in their respective fields, and the topics covered include solid-state chemistry of inorganic and organic materials, heterogeneous catalysis, surface science and materials science, with one section of the book focusing on modern developments in electron microscopy and its contributions to chemistry and materials science. The book serves as a modern and up-to-date monograph in these fields, and provides a valuable resource to researchers in academia and industry who require a comprehensive source of information on this important and rapidly developing subject.

Turning Points in Solid-State, Materials and Surface Science

Author : Kenneth D M Harris,Peter P Edwards
Publisher : Royal Society of Chemistry
Page : 946 pages
File Size : 48,8 Mb
Release : 2007-11-30
Category : Science
ISBN : 9781847558183

Get Book

Turning Points in Solid-State, Materials and Surface Science by Kenneth D M Harris,Peter P Edwards Pdf

The scientific exploration of solid materials represents one of the most important, fascinating and rewarding areas of scientific endeavour in the present day, not only from the viewpoint of advancing fundamental understanding but also from the industrial perspective, given the immense diversity of applications of solid materials across the full range of commercial sectors. Turning Points in Solid-State, Materials and Surface Science provides a state-of-the-art survey of some of the most important recent developments across the spectrum of solid-state, materials and surface sciences, while at the same time reflecting on key turning points in the evolution of this scientific discipline and projecting into the directions for future research progress. The book serves as a timely tribute to the life and work of Professor Sir John Meurig Thomas FRS, who has made monumental contributions to this field of science throughout his distinguished 50-year career in research, during which he has initiated, developed and exploited many important branches of this field. Indeed, the depth and breadth of his contributions towards the evolution and advancement of this scientific discipline, and his critical role in elevating this field to the important position that it now occupies within modern science, are demonstrated recurrently throughout the chapters of this book. Individual chapters are contributed by internationally leading experts in their respective fields, and the topics covered include solid-state chemistry of inorganic and organic materials, heterogeneous catalysis, surface science and materials science, with one section of the book focusing on modern developments in electron microscopy and its contributions to chemistry and materials science. The book serves as a modern and up-to-date monograph in these fields, and provides a valuable resource to researchers in academia and industry who require a comprehensive source of information on this important and rapidly developing subject.

Quantum Chemistry in the Age of Machine Learning

Author : Pavlo O. Dral
Publisher : Elsevier
Page : 702 pages
File Size : 50,8 Mb
Release : 2022-09-16
Category : Science
ISBN : 9780323886048

Get Book

Quantum Chemistry in the Age of Machine Learning by Pavlo O. Dral Pdf

Quantum chemistry is simulating atomistic systems according to the laws of quantum mechanics, and such simulations are essential for our understanding of the world and for technological progress. Machine learning revolutionizes quantum chemistry by increasing simulation speed and accuracy and obtaining new insights. However, for nonspecialists, learning about this vast field is a formidable challenge. Quantum Chemistry in the Age of Machine Learning covers this exciting field in detail, ranging from basic concepts to comprehensive methodological details to providing detailed codes and hands-on tutorials. Such an approach helps readers get a quick overview of existing techniques and provides an opportunity to learn the intricacies and inner workings of state-of-the-art methods. The book describes the underlying concepts of machine learning and quantum chemistry, machine learning potentials and learning of other quantum chemical properties, machine learning-improved quantum chemical methods, analysis of Big Data from simulations, and materials design with machine learning. Drawing on the expertise of a team of specialist contributors, this book serves as a valuable guide for both aspiring beginners and specialists in this exciting field. Compiles advances of machine learning in quantum chemistry across different areas into a single resource Provides insights into the underlying concepts of machine learning techniques that are relevant to quantum chemistry Describes, in detail, the current state-of-the-art machine learning-based methods in quantum chemistry

Orbital Interactions in Chemistry

Author : Thomas A. Albright,Jeremy K. Burdett,Myung-Hwan Whangbo
Publisher : John Wiley & Sons
Page : 853 pages
File Size : 40,9 Mb
Release : 2013-03-28
Category : Science
ISBN : 9781118558256

Get Book

Orbital Interactions in Chemistry by Thomas A. Albright,Jeremy K. Burdett,Myung-Hwan Whangbo Pdf

Explains the underlying structure that unites all disciplinesin chemistry Now in its second edition, this book explores organic,organometallic, inorganic, solid state, and materials chemistry,demonstrating how common molecular orbital situations arisethroughout the whole chemical spectrum. The authors explore therelationships that enable readers to grasp the theory thatunderlies and connects traditional fields of study withinchemistry, thereby providing a conceptual framework with which tothink about chemical structure and reactivity problems. Orbital Interactions in Chemistry begins by developingmodels and reviewing molecular orbital theory. Next, the bookexplores orbitals in the organic-main group as well as in solids.Lastly, the book examines orbital interaction patterns that occurin inorganic-organometallic fields as well as clusterchemistry, surface chemistry, and magnetism in solids. This Second Edition has been thoroughly revised andupdated with new discoveries and computational tools since thepublication of the first edition more than twenty-five years ago.Among the new content, readers will find: * Two new chapters dedicated to surface science and magneticproperties * Additional examples of quantum calculations, focusing oninorganic and organometallic chemistry * Expanded treatment of group theory * New results from photoelectron spectroscopy Each section ends with a set of problems, enabling readers totest their grasp of new concepts as they progress through the text.Solutions are available on the book's ftp site. Orbital Interactions in Chemistry is written for bothresearchers and students in organic, inorganic, solid state,materials, and computational chemistry. All readers will discoverthe underlying structure that unites all disciplines inchemistry.

Solid-State Chemistry

Author : Frank Hoffmann
Publisher : Walter de Gruyter GmbH & Co KG
Page : 382 pages
File Size : 49,6 Mb
Release : 2023-08-07
Category : Science
ISBN : 9783110657296

Get Book

Solid-State Chemistry by Frank Hoffmann Pdf

This book invites you on a tour through the most relevant topics of solid-state chemistry. It provides an up-to-date overview about fascinating structures of inorganic matter and new research developments. The reader will also gain crucial insights into many aspects of material science, from ceramics to superconductors. One chapter is specifically dedicated to the most rapidly evolving field of material science: metal-organic frameworks (MOFs). The book contains a chapter which is often neglected in others due to its complexity, the intermetallic phases. A concise but very didactic introduction to crystallographic specifications ensures that the reader will gain a deeper understanding of the crystal structures presented in the book. The book places special emphasis on the graphical illustrations which were specifically designed to promote real insights into the structural features. Instead of having to decipher hard to distinguish graphics the reader has an eye-opening experience. A further added value is that many references to the original research publications are given which enables easy follow-up for more detailed study.