Crystallization Of Nanoscaled Colloids

Crystallization Of Nanoscaled Colloids Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Crystallization Of Nanoscaled Colloids book. This book definitely worth reading, it is an incredibly well-written.

Crystallization of Nanoscaled Colloids

Author : Philip G. Born
Publisher : Springer Science & Business Media
Page : 139 pages
File Size : 53,8 Mb
Release : 2013-05-23
Category : Science
ISBN : 9783319002309

Get Book

Crystallization of Nanoscaled Colloids by Philip G. Born Pdf

This thesis deals with the processes that create ordered assemblies from disordered nanoparticles. Ordered packings of nanoscale particles can exhibit unusual properties. This work investigates the self-assembly of such particles, a process widely employed for the generation of ordered structures, but not yet well understood. In situ methods are used to observe the assembly of sub-micron polymer lattices and sub-10 nm gold particles into crystalline monolayers and aggregates. On the basis of these results, the book develops new models that describe the competition between different influences, such as thermal agitation and directional forces. It suggests necessary criteria that lead to the emergence of order.

Crystallization and Growth of Colloidal Nanocrystals

Author : Edson Roberto Leite,Caue Ribeiro
Publisher : Springer Science & Business Media
Page : 101 pages
File Size : 42,6 Mb
Release : 2011-11-17
Category : Science
ISBN : 9781461413080

Get Book

Crystallization and Growth of Colloidal Nanocrystals by Edson Roberto Leite,Caue Ribeiro Pdf

Since the size, shape, and microstructure of nanocrystalline materials strongly impact physical and chemical properties, the development of new synthetic routes to nanocrystals with controlled composition and morphology is a key objective of the nanomaterials community. This objective is dependent on control of the nucleation and growth mechanisms that occur during the synthetic process, which in turn requires a fundamental understanding of both classical nucleation and growth and non-classical growth processes in nanostructured materials. Recently, a novel growth process called Oriented Attachment (OA) was identified which appears to be a fundamental mechanism during the development of nanoscale materials. OA is a special case of aggregation that provides an important route by which nanocrystals grow, defects are formed, and unique—often symmetry-defying—crystal morphologies can be produced. This growth mechanism involves reversible self-assembly of primary nanocrystals followed by reorientation of the assembled nanoparticles to achieve structural accord at the particle-particle interface, the removal of adsorbates and solvent molecules, and, finally, the irreversible formation of chemical bonds to produce new single crystals, twins, and intergrowths. Crystallization and Growth of Colloidal Nanocrystals provides a current understanding of the mechanisms related to nucleation and growth for use in controlling nanocrystal morphology and physical-chemical properties, and is essential reading for any chemist or materials scientist with an interest in using nanocrystals as building blocks for larger structures. This book provides a compendium for the expert reader as well as an excellent introduction for advanced undergraduate and graduate students seeking a gateway into this dynamic area of research.

Surface Patterning with Colloidal Monolayers

Author : Nicolas Vogel
Publisher : Springer Science & Business Media
Page : 249 pages
File Size : 49,6 Mb
Release : 2012-12-28
Category : Technology & Engineering
ISBN : 9783642351334

Get Book

Surface Patterning with Colloidal Monolayers by Nicolas Vogel Pdf

How can the two dimensional crystallization of colloids be used to form highly ordered colloidal monolayers on solid substrates? What application does this have in generating arrays of nanostructures? These questions are addressed in Nicolas Vogel's thesis. Vogel describes a simple preparation method for the formation of uniform colloidal crystals over large areas, which he refines to yield more complex binary and non-close-packed arrangements. These monolayers can be applied to a process termed colloidal lithography which is used to prepare high quality metallic nanostructures with tailored properties defined to suit a variety of applications. Moreover, the author describes a method used to create metallic nanodot arrays with a resolution unprecedented for colloidal lithography methods. The author also outlines methodology to embed nanoparticle arrays into the substrate, which is developed and used to design robust, re-usable biosensor platforms and nanoscale patterns of biomimetic lipid bilayer membranes. The research in this thesis has led to a large number of publications in internationally renowned journals.

Nanoscience

Author : Victor M. Starov
Publisher : CRC Press
Page : 1610 pages
File Size : 50,7 Mb
Release : 2011-06-03
Category : Science
ISBN : 9781439857687

Get Book

Nanoscience by Victor M. Starov Pdf

The common perception is that nanoscience is something entirely new, that it sprung forth whole and fully formed like some mythological deity. But the truth is that like all things scientific, nanoscience is the natural result of the long evolution of scientific inquiry. Following a historical trail back to the middle of the 19th century, nanoscience is the inborn property of colloid and interface science. What’s important today is for us to recognize that nanoparticles are small colloidal objects. It should also be appreciated that over the past decades, a number of novel nanostructures have been developed, but whatever we call them, we cannot forget that their properties and behavior are still in the realm of colloid and interface science. However one views it, the interest and funding in nano-science is a tremendous opportunity to advance critical research in colloid chemistry. Nanoscience: Colloidal and Interfacial Aspects brings together a prominent roster of 42 leading investigators and their teams, who detail the wide range of theoretical and experimental knowledge that can be successfully applied for investigating nanosystems, many of which are actually well-known colloidal systems. This international grouping of pioneering investigators from academia and industry use these pages to provide researchers of today and tomorrow with a full examination of nano-disperse colloids, homogeneous and heterogeneous nano-structured materials (and their properties), and shelf-organization at the nano-scale. This cutting-edge reference provides information on investigations into non-linear electrokinetic phenomena in nano-sized dispersions and nano-sized biological systems. It discusses application aspects of technological processes in great detail, providing scientists and engineers across all fields with authoritative commentary on colloid and interface science operating at the nanoscale. Nano-Science: Colloidal and Interfacial Aspects provides an authoritative resource for those wanting to familiarize themselves with current progress as well as for those looking to make their own impact on the development of new technologies and practical applications in fields as diverse as medicine, materials, and environmental science to name but a few. Whether you call the technology nano or colloids, the field continues to be ripe with opportunity.

Colloid and Interface Chemistry for Nanotechnology

Author : Peter Kralchevsky,Reinhard Miller,Francesca Ravera
Publisher : CRC Press
Page : 564 pages
File Size : 50,8 Mb
Release : 2013-07-23
Category : Science
ISBN : 9781466569058

Get Book

Colloid and Interface Chemistry for Nanotechnology by Peter Kralchevsky,Reinhard Miller,Francesca Ravera Pdf

Colloid and interface science dealt with nanoscale objects for nearly a century before the term nanotechnology was coined. An interdisciplinary field, it bridges the macroscopic world and the small world of atoms and molecules. Colloid and Interface Chemistry for Nanotechnology is a collection of manuscripts reflecting the activities of research teams that have been involved in the networking project Colloid and Interface Chemistry for Nanotechnology (2006–2011), Action D43, the European Science Foundation. The project was a part of the intergovernmental framework for Cooperation in Science and Technology (COST), allowing the coordination of nationally funded research across Europe. With contributions by leading experts, this book covers a wide range of topics. Chapters are grouped into three sections: "Nanoparticle Synthesis and Characterization," "New Experimental Tools and Interpretation," and "Nanocolloidal Dispersions and Interfaces." The topics covered belong to six basic research areas: (1) The synthesis of nanostructured materials of well-defined size and function; (2) Analytical methods and tools for control and characterization of synthesized nanomaterials; (3) Self-assembly of nanomaterials, such as microemulsions and micelles, and their applications; (4) Bioinspired nanostructured materials—structure, properties, and applications; (5) Design of active, soft functional interfaces with unique properties for sensors, catalysts, and biomedical assays; and (6) Nanoscale elements in soft nanoscale devices for applications in analytical and biomedical sciences. This book describes highlights in nanotechnology based on state-of-the-art principles in colloid and interface science, demonstrating how great progress in the various branches of nanotechnology can be achieved. The application of these principles allows for the development of new experimental and theoretical tools.

Colloidal Self-Assembly

Author : Junpei Yamanaka,Tohru Okuzono,Akiko Toyotama
Publisher : Springer
Page : 0 pages
File Size : 43,5 Mb
Release : 2023-10-25
Category : Science
ISBN : 9819950511

Get Book

Colloidal Self-Assembly by Junpei Yamanaka,Tohru Okuzono,Akiko Toyotama Pdf

This concise book covers fundamental principles of colloidal self-assembly and overviews of basic and applied research in this field, with abundant illustrations and photographs. Experimental and computer simulation methods to study the colloidal self-assembly are demonstrated. Complementary videos "Visual Guide to Study Colloidal Self-Assembly" on the research procedures and assembly processes are available via SpringerLink to support learning. The book explains basic elements of mechanics and electromagnetism required to study the colloidal self-assembly, so that graduate students of chemistry and engineering courses can learn the contents on their own. It reviews important research topics, including the authors' works on the colloidal self-assembly of more than 30 years’ work. The principal topics include: (1) crystallization of colloidal dispersions, with the emphasis on the role of surface charges, (2) fabrication of large and high-quality colloidal crystals by applying controlled growth methods, (3) association and crystallization by depletion attraction in the presence of polymers, (4) clustering of colloidal particles, especially those in oppositely charged systems, and (5) two-dimensional colloidal crystals. Furthermore, it covers (6) applications of colloidal crystals, ranging from cosmetics to sensing materials. We also describe space experiments on colloidal self-assembly in the International Space Station. This book will interest graduate school students in colloid and polymer science, pharmaceutics, soft matter physics, material sciences, and chemical engineering courses. It will also be a useful guide for individuals in academia and industry undertaking research in this field.

Kinetics and Thermodynamics of Multistep Nucleation and Self-Assembly in Nanoscale Materials, Volume 151

Author : Gregoire Nicolis,Dominique Maes
Publisher : John Wiley & Sons
Page : 352 pages
File Size : 40,6 Mb
Release : 2012-05-22
Category : Science
ISBN : 9781118167830

Get Book

Kinetics and Thermodynamics of Multistep Nucleation and Self-Assembly in Nanoscale Materials, Volume 151 by Gregoire Nicolis,Dominique Maes Pdf

The Advances in Chemical Physics series—the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series presents contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics. This volume explores: Kinetics and thermodynamics of fluctuation-induced transitions in multistable systems (G. Nicolis and C. Nicolis) Dynamical rare event simulation techniques for equilibrium and nonequilibrium systems (Titus S. van Erp) Confocal depolarized dynamic light scattering (M. Potenza, T. Sanvito, V. Degiorgio, and M. Giglio) The two-step mechanism and the solution-crystal spinodal for nucleation of crystals in solution (Peter G. Vekilov) Experimental studies of two-step nucleation during two-dimensional crystallization of colloidal particles with short-range attraction (John R. Savage, Liquan Pei, and Anthony D. Dinsmore) On the role of metastable intermediate states in the homogeneous nucleation of solids from solution (James F. Lutsko) Effects of protein size on the high-concentration/low-concentration phase transition (Patrick Grosfils) Geometric constraints in the self-assembly of mineral dendrites and platelets (John J. Kozak) What can mesoscopic level in situ observations teach us about kinetics and thermodynamics of protein crystallization? (Mike Sleutel, Dominique Maes, and Alexander Van Driessche) The ability of silica to induce biomimetic crystallization of calcium carbonate (Matthias Kellermeier, Emilio Melero-GarcÍa, Werner Kunz, and Juan Manuel GarcÍa-Ruiz)

Nanoscale Assembly

Author : Wilhelm T.S. Huck
Publisher : Springer Science & Business Media
Page : 249 pages
File Size : 46,8 Mb
Release : 2006-07-11
Category : Technology & Engineering
ISBN : 9780387256566

Get Book

Nanoscale Assembly by Wilhelm T.S. Huck Pdf

Nanotechnology has received tremendous interest over the last decade, not only from the scientific community but also from a business perspective and from the general public. Although nanotechnology is still at the largely unexplored frontier of science, it has the potential for extremely exciting technological innovations that will have an enormous impact on areas as diverse as information technology, medicine, energy supply and probably many others. The miniturization of devices and structures will impact the speed of devices and information storage capacity. More importantly, though, nanotechnology should lead to completely new functional devices as nanostructures have fundamentally different physical properties that are governed by quantum effects. When nanometer sized features are fabricated in materials that are currently used in electronic, magnetic, and optical applications, quantum behavior will lead to a set of unprecedented properties. The interactions of nanostructures with biological materials are largely unexplored. Future work in this direction should yield enabling technologies that allows the study and direct manipulation of biological processes at the (sub) cellular level.

Progress in Colloid and Surface Science Research

Author : Emelio A. Scarpetti
Publisher : Nova Publishers
Page : 358 pages
File Size : 41,7 Mb
Release : 2007
Category : Science
ISBN : 1600215998

Get Book

Progress in Colloid and Surface Science Research by Emelio A. Scarpetti Pdf

This book presents leading-edge research on colloids and surface science and spans a wide range of topics including biological interactions at surfaces, molecular assembly of selective surfaces, role of surface chemistry in microelectronics and catalysis, tribology, and colloidal physics in the context of crystallisation and suspensions; fluid interfaces; adsorption; surface aspects of catalysis; dispersion preparation, characterisation and stability; aerosols, foams and emulsions; surfaces forces; micelles and microemulsions; light scattering and spectroscopy; nanoparticles; new material science; detergency and wetting; thin films, liquid membranes and bilayers; surfactant science; polymer colloids; rheology of colloidal and disperse systems; electrical phenomena in interfacial and disperse systems.

Kinetics and Thermodynamics of Multistep Nucleation and Self-Assembly in Nanoscale Materials

Author : Gregoire Nicolis,Dominique Maes
Publisher : John Wiley & Sons
Page : 352 pages
File Size : 49,5 Mb
Release : 2012-04-11
Category : Science
ISBN : 9781118309483

Get Book

Kinetics and Thermodynamics of Multistep Nucleation and Self-Assembly in Nanoscale Materials by Gregoire Nicolis,Dominique Maes Pdf

The Advances in Chemical Physics series—the cuttingedge of research in chemical physics The Advances in Chemical Physics series provides thechemical physics and physical chemistry fields with a forum forcritical, authoritative evaluations of advances in every area ofthe discipline. Filled with cutting-edge research reported in acohesive manner not found elsewhere in the literature, each volumeof the Advances in Chemical Physics series presents contributionsfrom internationally renowned chemists and serves as the perfectsupplement to any advanced graduate class devoted to the study ofchemical physics. This volume explores: Kinetics and thermodynamics of fluctuation-induced transitionsin multistable systems (G. Nicolis and C. Nicolis) Dynamical rare event simulation techniques for equilibrium andnonequilibrium systems (Titus S. van Erp) Confocal depolarized dynamic light scattering (M. Potenza, T.Sanvito, V. Degiorgio, and M. Giglio) The two-step mechanism and the solution-crystal spinodal fornucleation of crystals in solution (Peter G. Vekilov) Experimental studies of two-step nucleation duringtwo-dimensional crystallization of colloidal particles withshort-range attraction (John R. Savage, Liquan Pei, and Anthony D.Dinsmore) On the role of metastable intermediate states in the homogeneousnucleation of solids from solution (James F. Lutsko) Effects of protein size on thehigh-concentration/low-concentration phase transition (PatrickGrosfils) Geometric constraints in the self-assembly of mineral dendritesand platelets (John J. Kozak) What can mesoscopic level in situ observations teach us aboutkinetics and thermodynamics of protein crystallization? (MikeSleutel, Dominique Maes, and Alexander Van Driessche) The ability of silica to induce biomimetic crystallization ofcalcium carbonate (Matthias Kellermeier, Emilio Melero-GarcÍa,Werner Kunz, and Juan Manuel GarcÍa-Ruiz)

Colloid and Surface Research Trends

Author : Peter A. Fong
Publisher : Nova Publishers
Page : 356 pages
File Size : 48,9 Mb
Release : 2007
Category : Colloids
ISBN : 1600215939

Get Book

Colloid and Surface Research Trends by Peter A. Fong Pdf

Colloid and surface science research spans a wide range of topics including biological interactions at surfaces, molecular assembly of selective surfaces, role of surface chemistry in microelectronics and catalysis, tribology, and colloidal physics in the context of crystallisation and suspensions; fluid interfaces; adsorption; surface aspects of catalysis; dispersion preparation, characterisation and stability; aerosols, foams and emulsions; surfaces forces; micelles and microemulsions; light scattering and spectroscopy; nanoparticles; new material science; detergency and wetting; thin films, liquid membranes and bilayers; surfactant science; polymer colloids; rheology of colloidal and disperse systems; electrical phenomena in interfacial and disperse systems. This book presents research in this dynamic field.

From Colloids to Nanotechnology

Author : Miklos Zrinyi,Zoltán Hórvölgyi
Publisher : Springer
Page : 233 pages
File Size : 42,5 Mb
Release : 2004-06-05
Category : Science
ISBN : 9783540451198

Get Book

From Colloids to Nanotechnology by Miklos Zrinyi,Zoltán Hórvölgyi Pdf

This volume contains a selection of the papers presented at the 8th Conference on Colloid Chemistry. It was hosted by the Hungarian Chemical Society and organized by Budapest University of Technology and Economics and was held in Keszthely, Hungary in September 2002. A colloidal approach to nano science was one of the main topics of the meeting. It was revealed that the colloid science provides a strong background of the modern material science and nanotechnology. This volume is intended for professionals doing fundamental research or development of industrial applications, who encounter colloid particles, colloid structures, and interface phenomena during their work.

Nanoscale Materials

Author : Luis M. Liz-Marzán,Prashant V. Kamat
Publisher : Springer Science & Business Media
Page : 500 pages
File Size : 41,5 Mb
Release : 2007-05-08
Category : Science
ISBN : 9780306481086

Get Book

Nanoscale Materials by Luis M. Liz-Marzán,Prashant V. Kamat Pdf

Organized nanoassemblies of inorganic nanoparticles and organic molecules are building blocks of nanodevices, whether they are designed to perform molecular level computing, sense the environment or improve the catalytic properties of a material. The key to creation of these hybrid nanostructures lies in understanding the chemistry at a fundamental level. This book serves as a reference book for researchers by providing fundamental understanding of many nanoscopic materials.

Plasmonic Resonators

Author : Masanobu Iwanaga
Publisher : CRC Press
Page : 324 pages
File Size : 52,5 Mb
Release : 2016-10-14
Category : Science
ISBN : 9781315341040

Get Book

Plasmonic Resonators by Masanobu Iwanaga Pdf

Plasmonic resonators, composed of metallic micro- and nanostructures, belong to the category of excited-state physics on resonances from gigahertz to petahertz. Dynamical physics is in contrast to ground-state physics, which includes thermal states, and is connected to diverse applications to enhance existing photo-induced effects and phenomena such as plasmon-enhanced photoluminescence and Raman scattering. This book has three main aims: to provide fundamental knowledge on plasmonic resonators, to explain diverse plasmonic resonators, and to stimulate further development in plasmonic resonators. Plasmon-related studies, which are sometimes called plasmonics and include a substantial portion of metamaterials, have shown significant development since the 1980s. The piled-up results are too numerous to study from the beginning, but this book summarizes those results, including the history (past), all the possible types of plasmonic resonators (present), and their wide range of applications (future). It provides the basics of plasmons and resonant physics for undergraduate students, the systematic knowledge on plasmonic resonators for graduate students, and cutting-edge and in-depth information on plasmon-enhancement studies for researchers who are not experts in plasmonics and metamaterials, thereby benefitting a wide range of readers who are interested in the nanotechnology involving metallic nanostructures.