Dilute Iii V Nitride Semiconductors And Material Systems

Dilute Iii V Nitride Semiconductors And Material Systems Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Dilute Iii V Nitride Semiconductors And Material Systems book. This book definitely worth reading, it is an incredibly well-written.

Dilute III-V Nitride Semiconductors and Material Systems

Author : Ayse Erol
Publisher : Springer Science & Business Media
Page : 592 pages
File Size : 52,8 Mb
Release : 2008-01-12
Category : Technology & Engineering
ISBN : 9783540745297

Get Book

Dilute III-V Nitride Semiconductors and Material Systems by Ayse Erol Pdf

This book reviews the current status of research and development in dilute III-V nitrides. It covers major developments in this new class of materials within 24 chapters from prominent research groups. The book integrates materials science and applications in optics and electronics in a unique way. It is valuable both as a reference work for researchers and as a study text for graduate students.

Dilute III-V Nitride Semiconductors and Material Systems

Author : Ayse Erol
Publisher : Springer
Page : 592 pages
File Size : 40,5 Mb
Release : 2009-09-02
Category : Technology & Engineering
ISBN : 3540842993

Get Book

Dilute III-V Nitride Semiconductors and Material Systems by Ayse Erol Pdf

This book reviews the current status of research and development in dilute III-V nitrides. It covers major developments in this new class of materials within 24 chapters from prominent research groups. The book integrates materials science and applications in optics and electronics in a unique way. It is valuable both as a reference work for researchers and as a study text for graduate students.

Hydrogenated Dilute Nitride Semiconductors

Author : Gianluca Ciatto
Publisher : CRC Press
Page : 316 pages
File Size : 42,7 Mb
Release : 2015-04-01
Category : Science
ISBN : 9789814463461

Get Book

Hydrogenated Dilute Nitride Semiconductors by Gianluca Ciatto Pdf

The nonlinear behavior of nitrogen and the passivation effect of hydrogen in dilute nitrides open the way to the manufacture of a new class of nanostructured devices with in-plane variation of the optical band gap. This book addresses the modifications of the electronic structure and of the optical and structural properties induced in these technologically important semiconductors by atomic hydrogen irradiation. The book comprises discussions on experimental results from several techniques, enriched by state-of-the-art theoretical studies aimed at clarifying the origin of hydrogenation effects that lead to the discovery of specific nitrogen–hydrogen complexes. It presents techniques, such as infrared absorption spectroscopy, synchrotron radiation, and nuclear reaction analysis, which have indeed been crucial for addressing the physical origin of hydrogenation effects and their role in fine structural characterization. The book is not a simple assembly of the contributions of different groups on the subject; it rather tells the complete story of the amazing effects of hydrogen irradiation from the first observations to the discovery of their origin and to potential technology transfer. The primary scope of the book is to guide PhD students and new scientists into the field and to inspire similar analysis approaches in other fields.

Metalorganic Vapor Phase Epitaxy (MOVPE)

Author : Stuart Irvine,Peter Capper
Publisher : John Wiley & Sons
Page : 584 pages
File Size : 49,7 Mb
Release : 2019-08-27
Category : Technology & Engineering
ISBN : 9781119313045

Get Book

Metalorganic Vapor Phase Epitaxy (MOVPE) by Stuart Irvine,Peter Capper Pdf

Systematically discusses the growth method, material properties, and applications for key semiconductor materials MOVPE is a chemical vapor deposition technique that produces single or polycrystalline thin films. As one of the key epitaxial growth technologies, it produces layers that form the basis of many optoelectronic components including mobile phone components (GaAs), semiconductor lasers and LEDs (III-Vs, nitrides), optical communications (oxides), infrared detectors, photovoltaics (II-IV materials), etc. Featuring contributions by an international group of academics and industrialists, this book looks at the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring. It covers the most important materials from III-V and II-VI compounds to quantum dots and nanowires, including sulfides and selenides and oxides/ceramics. Sections in every chapter of Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications cover the growth of the particular materials system, the properties of the resultant material, and its applications. The book offers information on arsenides, phosphides, and antimonides; nitrides; lattice-mismatched growth; CdTe, MCT (mercury cadmium telluride); ZnO and related materials; equipment and safety; and more. It also offers a chapter that looks at the future of the technique. Covers, in order, the growth method, material properties, and applications for each material Includes chapters on the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring Looks at important materials such as III-V and II-VI compounds, quantum dots, and nanowires Provides topical and wide-ranging coverage from well-known authors in the field Part of the Materials for Electronic and Optoelectronic Applications series Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications is an excellent book for graduate students, researchers in academia and industry, as well as specialist courses at undergraduate/postgraduate level in the area of epitaxial growth (MOVPE/ MOCVD/ MBE).

III-V Nitride Semiconductors

Author : Edward T. Yu
Publisher : CRC Press
Page : 715 pages
File Size : 51,7 Mb
Release : 2022-10-30
Category : Technology & Engineering
ISBN : 9781000715958

Get Book

III-V Nitride Semiconductors by Edward T. Yu Pdf

The concepts in this book will provide a comprehensive overview of the current state for a broad range of nitride semiconductor devices, as well as a detailed introduction to selected materials and processing issues of general relevance for these applications. This compilation is very timely given the level of interest and the current stage of research in nitride semiconductor materials and device applications. This volume consists of chapters written by a number of leading researchers in nitride materials and device technology addressing Ohmic and Schottky contacts, AIGalnN multiple quantum well laser diodes, nitride vertical cavity emitting lasers, and ultraviolet photodetectors. This unique volume provides a comprehensive review and introduction to application and devices based on GaN and related compounds for newcomers to the field and stimulus to further advances for experienced researchers.

Magnetooptical properties of dilute nitride nanowires

Author : Mattias Jansson
Publisher : Linköping University Electronic Press
Page : 77 pages
File Size : 49,8 Mb
Release : 2020-06-18
Category : Electronic books
ISBN : 9789179298838

Get Book

Magnetooptical properties of dilute nitride nanowires by Mattias Jansson Pdf

Nanostructured III-V semiconductors have emerged as one of the most promising materials systems for future optoelectronic applications. While planar III-V compounds are already at the center of the ongoing lighting revolution, where older light sources are replaced by modern white light LEDs, fabricating such materials in novel architectures, such as nanowires and quantum dots, creates new possibilities for optoelectronic applications. Not only do nanoscale structures allow the optically active III-V materials to be integrated with silicon microelectronics, but they also give rise to new fascinating properties inherent to the nanoscale. One of the key parameters considered when selecting materials for applications in light-emitting and photovoltaic devices is the band gap energy. While alloying of conventional III-V materials provides a certain degree of band gap tunability, a significantly enhanced possibility of band gap engineering is offered by so-called dilute nitrides, where incorporation of a small percentage of nitrogen into III-V compounds causes a dramatic down-shift of the conduction band edge. In addition, nitrogen-induced splitting of the conduction band in dilute nitrides can be utilized in intermediate band solar cells, belonging to the next generation of photovoltaic devices. For any material to be viable for optoelectronic applications, detailed knowledge of the electronic structure of the material, as well as a good understanding of carrier recombination processes is vital. For example, alloying may not only cause changes in the electronic structure but can also induce disorder. Disorder-induced potential fluctuations may alter charge carrier and exciton dynamics, and may even induce quantum confinement. Moreover, various defects in the material may introduce detrimental non-radiative (NR) states in the band gap deteriorating radiative efficiency. It is evident that, due to their different growth mechanisms, such properties could be markedly different in nanowires as compared to their planar counterparts. In this thesis, I aim to describe the electronic structure of dilute nitride nanowires, and its effects on the optical properties. Firstly, we investigate the electronic structure, and the structural and optical properties of novel GaNAsP nanowires, with a particular focus on the dominant recombination channels in the material. Secondly, we show how short-range fluctuations in the nitrogen content lead to the formation of quantum dots in dilute nitride nanowires, and investigate their electronic structure. Finally, we investigate the combined charge carrier and exciton dynamics of the quantum dots and effects of defects in their surroundings. Before considering individual sources of NR recombination, it is instructive to investigate the overall effects of nitrogen incorporation on the structural properties of the nanowires. In Paper I, we show that nitrogen incorporation up to 0.16% in Ga(N)AsP nanowires does not affect the overall structural quality of the material, nor does nitrogen degrade the good compositional uniformity of the nanowires. It is evident from our studies, however, that nitrogen incorporation has a strong and complex effect on recombination processes. We first show that nitrogen incorporation in GaNAsP nanowires reduces the NR recombination at room temperature as compared to the nitrogen-free nanowires (Paper I). This is in stark contrast to dilute nitride epilayers, where nitrogen incorporation enhances NR recombination. The reason for this difference is that in nanowires the surface recombination, rather than recombination via point defects, is the dominant NR recombination mechanism. We suggest that the nitrogen-induced suppression of the NR surface recombination in the nanowires is due to nitridation of the nanowire surface. Another NR recombination channel common in III-V nanowires is caused by the presence of structural defects, such as rotational twin planes and stacking faults. Interestingly, while nitrogen incorporation does not appear to affect the density of such structural defects, increasing nitrogen incorporation reduces the NR recombination via the structural defects (Paper II). This is explained by competing trapping of excited carriers/excitons to the localized states characteristic to dilute nitrides, and at nitrogen-induced NR defects. This effect is, however, only present at cryogenic temperatures, while at room temperature the NR recombination via the structural defects is not the dominant recombination channel. Importance of point defects in carrier recombination is highlighted in Paper III. Using the optically detected magnetic resonance technique, we show that gallium vacancies (VGa) that are formed within the nanowire volume act as efficient NR recombination centers, degrading optical efficiency of the Ga(N)AsP-based nanowires. Interestingly, while the defect formation is promoted by nitrogen incorporation, it is also readily present in ternary GaAsP nanowires. This contrasts with previous studies on planar structures, where VGa was not formed in the absence of nitrogen, unless subjected to irradiation by high-energy particles or heavy n-type doping. This, again, highlights how the defect formation is strikingly different in nanowires as compared to planar structures, likely due to the different growth processes. Potential fluctuations in the conduction band, caused by non-uniformity of the nitrogen incorporation, is characteristic to dilute nitrides and is known to cause exciton/carrier localization. We find that in dilute nitride nanowires, such fluctuations at the short range cause three-dimensional quantum confinement of excitons, resulting in optically active quantum dots with spectrally ultranarrow and highly polarized emission lines (Paper IV). A careful investigation of such quantum dots reveals that their properties are strongly dependent on the host material (Papers V, VI). While the principal quantization axis of the quantum dots formed in the ternary GaNAs nanowires is preferably oriented along the nanowire axis (Paper V), it switches to the direction perpendicular to the nanowire axis in the quaternary GaNAsP nanowires (Paper VI). Another aspect illustrating the influence of the host material on the quantum-dot properties is the electronic character of the captured hole. In both alloys, we show coexistence of quantum dots where the captured holes are of either a pure heavy-hole character or a mixed light-hole and heavy-hole character. In the GaNAs quantum dots, the main cause of the light- and heavy-hole splitting is uniaxial tensile strain induced by a combination of lattice mismatch with the nanowire core and local alloy fluctuations (Paper V). In the GaNAsP quantum dots, however, we suggest that the main mechanism for the light- and heavy-hole splitting is local fluctuations in the P/As ratio (Paper VI). Using time correlation single-photon counting, we show that the quantum dots in these dilute nitride nanowires behave as single photon emitters (Paper VI), confirming the three-dimensional quantum confinement of the emitters. Finally, since the quantum dots are formed by fluctuations mainly in the conduction band, only electrons are preferentially captured in the 0D confinement potential, whereas holes are expected to be mainly localized through the Coulomb interaction once an electron is captured by the quantum dot. In Paper VII, we investigate this rather peculiar capture mechanism, which we show to lead to unipolar, negative charging of the quantum dot. Moreover, we demonstrate that carrier capture by some quantum dots is strongly affected by the presence of defects in their local surroundings, which further alters the charge state of the quantum dot, where formation of the negatively charged exciton is promoted at the expense of its neutral counterpart. This underlines that the local surroundings of the quantum dots may greatly affect their properties and illustrates a possible way to exploit the defects for charge engineering of the quantum dots. In summary, in this thesis work, we identify several important non-radiative recombination processes in dilute nitride nanowires that can undermine the potential of these novel nanostructures for future optoelectronic applications. The gained knowledge could be found useful for designing strategies to mitigate these harmful processes, thereby improving the efficiency of future light-emitting and photovoltaic devices based on these nanowires. Furthermore, we uncover a set of optically bright quantum dot single-photon emitters embedded in the dilute nitride nanowires, and reveal their unusual electronic structure with strikingly different confinement potentials between electrons and holes. Our findings open a new pathway for charge engineering of the quantum dots in nanowires, attractive for applications in e.g. quantum computation and optical switching.

Mid-infrared Optoelectronics

Author : Eric Tournié,Laurent Cerutti
Publisher : Woodhead Publishing
Page : 750 pages
File Size : 49,8 Mb
Release : 2019-10-19
Category : Technology & Engineering
ISBN : 9780081027387

Get Book

Mid-infrared Optoelectronics by Eric Tournié,Laurent Cerutti Pdf

Mid-infrared Optoelectronics: Materials, Devices, and Applications addresses the new materials, devices and applications that have emerged over the last decade, along with exciting areas of research. Sections cover fundamentals, light sources, photodetectors, new approaches, and the application of mid-IR devices, with sections discussing LEDs, laser diodes, and quantum cascade lasers, mid-infrared optoelectronics, emerging research areas, dilute bismide and nitride alloys, Group-IV materials, gallium nitride heterostructures, and new nonlinear materials. Finally, the most relevant applications of mid-infrared devices are reviewed in industry, gas sensing, spectroscopy, and imaging. This book presents a key reference for materials scientists, engineers and professionals working in R&D in the area of semiconductors and optoelectronics. Provides a comprehensive overview of mid-infrared photodetectors and light sources and the latest materials and devices Reviews emerging areas of research in the field of mid-infrared optoelectronics, including new materials, such as wide bandgap materials, chalcogenides and new approaches, like heterogeneous integration Includes information on the most relevant applications in industry, like gas sensing, spectroscopy and imaging

III-V Nitride Semiconductors

Author : Edward T. Yu
Publisher : CRC Press
Page : 718 pages
File Size : 46,6 Mb
Release : 2002-09-06
Category : Technology & Engineering
ISBN : 1560329742

Get Book

III-V Nitride Semiconductors by Edward T. Yu Pdf

The concepts in this book will provide a comprehensive overview of the current state for a broad range of nitride semiconductor devices, as well as a detailed introduction to selected materials and processing issues of general relevance for these applications. This compilation is very timely given the level of interest and the current stage of research in nitride semiconductor materials and device applications. This volume consists of chapters written by a number of leading researchers in nitride materials and device technology addressing Ohmic and Schottky contacts, AIGalnN multiple quantum well laser diodes, nitride vertical cavity emitting lasers, and ultraviolet photodetectors. This unique volume provides a comprehensive review and introduction to application and devices based on GaN and related compounds for newcomers to the field and stimulus to further advances for experienced researchers.

Dilute Nitride Semiconductors

Author : Mohamed Henini
Publisher : Elsevier
Page : 640 pages
File Size : 47,5 Mb
Release : 2004-12-15
Category : Technology & Engineering
ISBN : 9780080455990

Get Book

Dilute Nitride Semiconductors by Mohamed Henini Pdf

This book contains full account of the advances made in the dilute nitrides, providing an excellent starting point for workers entering the field. It gives the reader easier access and better evaluation of future trends, Conveying important results and current ideas. Includes a generous list of references at the end of each chapter, providing a useful reference to the III-V-N based semiconductors research community. The high speed lasers operating at wavelength of 1.3 μm and 1.55 μm are very important light sources in optical communications since the optical fiber used as a transport media of light has dispersion and attenuation minima, respectively, at these wavelengths. These long wavelengths are exclusively made of InP-based material InGaAsP/InP. However, there are several problems with this material system. Therefore, there has been considerable effort for many years to fabricate long wavelength laser structures on other substrates, especially GaAs. The manufacturing costs of GaAs-based components are lower and the processing techniques are well developed. In 1996 a novel quaternary material GaInAsN was proposed which could avoid several problems with the existing technology of long wavelength lasers. In this book, several leaders in the field of dilute nitrides will cover the growth and processing, experimental characterization, theoretical understanding, and device design and fabrication of this recently developed class of semiconductor alloys. They will review their current status of research and development. Dilute Nitrides (III-N-V) Semiconductors: Physics and Technology organises the most current available data, providing a ready source of information on a wide range of topics, making this book essential reading for all post graduate students, researchers and practitioners in the fields of Semiconductors and Optoelectronics Contains full account of the advances made in the dilute nitrides, providing an excellent starting point for workers entering the field Gives the reader easier access and better evaluation of future trends, conveying important results and current ideas Includes a generous list of references at the end of each chapter, providing a useful reference to the III-V-N based semiconductors research community

Solar Cells

Author : Augustin McEvoy,L. Castaner,Tom Markvart
Publisher : Newnes
Page : 600 pages
File Size : 50,5 Mb
Release : 2012-12-31
Category : Technology & Engineering
ISBN : 9780080993799

Get Book

Solar Cells by Augustin McEvoy,L. Castaner,Tom Markvart Pdf

Enormous leaps forward in the efficiency and the economy of solar cells are being made at a furious pace. New materials and manufacturing processes have opened up new realms of possibility for the application of solar cells. Crystalline silicon cells are increasingly making way for thin film cells, which are spawning experimentation with third-generation high-efficiency multijunction cells, carbon-nanotube based cells, UV light for voltage enhancement, and the use of the infrared spectrum for night-time operation, to name only a few recent advances. This thoroughly updated new edition of Markvart and Castaner’s Solar Cells, extracted from their industry standard Practical Handbook of Photovoltaics, is the definitive reference covering the science and operation, materials and manufacture of solar cells. It is essential reading for engineers, installers, designers, and policy-makers who need to understand the science behind the solar cells of today, and tomorrow, in order to take solar energy to the next level. A thorough update to the definitive reference to solar cells, created by a cast of international experts from industry and academia to ensure the highest quality information from multiple perspectives Covers the whole spectrum of solar cell information, from basic scientific background, to the latest advances in materials, to manufacturing issues, to testing and calibration. Case studies, practical examples and reports on the latest advances take the new edition of this amazing resource beyond a simple amalgamation of a vast amount of knowledge, into the realm of real world applications

Gallium Nitride Electronics

Author : Rüdiger Quay
Publisher : Springer Science & Business Media
Page : 470 pages
File Size : 55,9 Mb
Release : 2008-04-05
Category : Technology & Engineering
ISBN : 9783540718925

Get Book

Gallium Nitride Electronics by Rüdiger Quay Pdf

This book is based on nearly a decade of materials and electronics research at the leading research institution on the nitride topic in Europe. It is a comprehensive monograph and tutorial that will be of interest to graduate students of electrical engineering, communication engineering, and physics; to materials, device, and circuit engineers in research and industry; to all scientists with a general interest in advanced electronics.

Molecular Beam Epitaxy

Author : Mohamed Henini
Publisher : Elsevier
Page : 788 pages
File Size : 45,8 Mb
Release : 2018-06-27
Category : Science
ISBN : 9780128121375

Get Book

Molecular Beam Epitaxy by Mohamed Henini Pdf

Molecular Beam Epitaxy (MBE): From Research to Mass Production, Second Edition, provides a comprehensive overview of the latest MBE research and applications in epitaxial growth, along with a detailed discussion and ‘how to’ on processing molecular or atomic beams that occur on the surface of a heated crystalline substrate in a vacuum. The techniques addressed in the book can be deployed wherever precise thin-film devices with enhanced and unique properties for computing, optics or photonics are required. It includes new semiconductor materials, new device structures that are commercially available, and many that are at the advanced research stage. This second edition covers the advances made by MBE, both in research and in the mass production of electronic and optoelectronic devices. Enhancements include new chapters on MBE growth of 2D materials, Si-Ge materials, AIN and GaN materials, and hybrid ferromagnet and semiconductor structures. Condenses the fundamental science of MBE into a modern reference, speeding up literature review Discusses new materials, novel applications and new device structures, grounding current commercial applications with modern understanding in industry and research Includes coverage of MBE as mass production epitaxial technology and how it enhances processing efficiency and throughput for the semiconductor industry and nanostructured semiconductor materials research community

Wave Propagation

Author : Andrey Petrin
Publisher : BoD – Books on Demand
Page : 584 pages
File Size : 45,6 Mb
Release : 2011-03-16
Category : Technology & Engineering
ISBN : 9789533072753

Get Book

Wave Propagation by Andrey Petrin Pdf

The book collects original and innovative research studies of the experienced and actively working scientists in the field of wave propagation which produced new methods in this area of research and obtained new and important results. Every chapter of this book is the result of the authors achieved in the particular field of research. The themes of the studies vary from investigation on modern applications such as metamaterials, photonic crystals and nanofocusing of light to the traditional engineering applications of electrodynamics such as antennas, waveguides and radar investigations.

Einstein Relation in Compound Semiconductors and Their Nanostructures

Author : Kamakhya Prasad Ghatak,Sitangshu Bhattacharya,Debashis De
Publisher : Springer Science & Business Media
Page : 471 pages
File Size : 46,9 Mb
Release : 2008-11-16
Category : Science
ISBN : 9783540795575

Get Book

Einstein Relation in Compound Semiconductors and Their Nanostructures by Kamakhya Prasad Ghatak,Sitangshu Bhattacharya,Debashis De Pdf

Focusing only on the Einstein relation in compound semiconductors and their nanostructures, this book deals with open research problems from carbon nanotubes to quantum wire superlattices with different band structures, and other field assisted systems.

Physics, Chemistry and Application of Nanostructures

Author : Viktor Evgen?evich Borisenko
Publisher : World Scientific
Page : 669 pages
File Size : 44,8 Mb
Release : 2009
Category : Science
ISBN : 9789814280358

Get Book

Physics, Chemistry and Application of Nanostructures by Viktor Evgen?evich Borisenko Pdf

The book presents invited reviews and original short notes with recent results obtained in fabrication study and application of nanostructures, which are promising for new generations of electronic and optoelectronic devices. Recent developments in nanotechnology, nanoelectronics, spintronics, nanophotonics, nanosensorics and nanobiology are presented.