Dynamics Of Microelectromechanical Systems

Dynamics Of Microelectromechanical Systems Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Dynamics Of Microelectromechanical Systems book. This book definitely worth reading, it is an incredibly well-written.

Dynamics of Microelectromechanical Systems

Author : Nicolae Lobontiu
Publisher : Springer Science & Business Media
Page : 403 pages
File Size : 46,9 Mb
Release : 2014-07-08
Category : Technology & Engineering
ISBN : 9780387681955

Get Book

Dynamics of Microelectromechanical Systems by Nicolae Lobontiu Pdf

Here is a textbook for senior undergraduate and graduate level students that offers a novel and systematic look into the dynamics of MEMS. It includes numerous solved examples together with the proposed problems. The material to be found here will also be of interest to researchers with a non-mechanical background. The book focuses on the mechanical domain, specifically the dynamic sub-domain, and provides an in-depth treatment of problems that involve reliable modeling, analysis and design.

Mechanics of Microelectromechanical Systems

Author : Nicolae Lobontiu,Ephrahim Garcia
Publisher : Springer Science & Business Media
Page : 415 pages
File Size : 52,7 Mb
Release : 2006-01-16
Category : Technology & Engineering
ISBN : 9780387230375

Get Book

Mechanics of Microelectromechanical Systems by Nicolae Lobontiu,Ephrahim Garcia Pdf

This book offers a comprehensive coverage to the mechanics of microelectromechanical systems (MEMS), which are analyzed from a mechanical engineer’s viewpoint as devices that transform an input form of energy, such as thermal, electrostatic, electromagnetic or optical, into output mechanical motion (in the case of actuation) or that can operate with the reversed functionality (as in sensors) and convert an external stimulus, such as mechanical motion, into (generally) electric energy. The impetus of this proposal stems from the perception that such an approach might contribute to a more solid understanding of the principles governing the mechanics of MEMS, and would hopefully enhance the efficiency of modeling and designing reliable and desirably-optimized microsystems. The work represents an attempt at both extending and deepening the mechanical-based approach to MEMS in the static domain by providing simple, yet reliable tools that are applicable to micromechanism design through current fabrication technologies. Lumped-parameter stiffness and compliance properties of flexible components are derived both analytically (as closed-form solutions) and as simplified (engineering) formulas. Also studied are the principal means of actuation/sensing and their integration into the overall microsystem. Various examples of MEMS are studied in order to better illustrate the presentation of the different modeling principles and algorithms. Through its objective, approach and scope, this book offers a novel and systematic insight into the MEMS domain and complements existing work in the literature addressing part of the material developed herein.

Microsystems Dynamics

Author : Vytautas Ostasevicius,Rolanas Dauksevicius
Publisher : Springer Science & Business Media
Page : 214 pages
File Size : 49,6 Mb
Release : 2010-11-01
Category : Technology & Engineering
ISBN : 9789048197019

Get Book

Microsystems Dynamics by Vytautas Ostasevicius,Rolanas Dauksevicius Pdf

In recent years microelectromechanical systems (MEMS) have emerged as a new technology with enormous application potential. MEMS manufacturing techniques are essentially the same as those used in the semiconductor industry, therefore they can be produced in large quantities at low cost. The added benefits of lightweight, miniature size and low energy consumption make MEMS commercialization very attractive. Modeling and simulation is an indispensable tool in the process of studying these new dynamic phenomena, development of new microdevices and improvement of the existing designs. MEMS technology is inherently multidisciplinary since operation of microdevices involves interaction of several energy domains of different physical nature, for example, mechanical, fluidic and electric forces. Dynamic behavior of contact-type electrostatic microactuators, such as a microswitches, is determined by nonlinear fluidic-structural, electrostatic-structural and vibro-impact interactions. The latter is particularly important: Therefore it is crucial to develop accurate computational models for numerical analysis of the aforementioned interactions in order to better understand coupled-field effects, study important system dynamic characteristics and thereby formulate guidelines for the development of more reliable microdevices with enhanced performance, reliability and functionality.

MEMS Linear and Nonlinear Statics and Dynamics

Author : Mohammad I. Younis
Publisher : Springer Science & Business Media
Page : 463 pages
File Size : 54,5 Mb
Release : 2011-06-27
Category : Technology & Engineering
ISBN : 9781441960207

Get Book

MEMS Linear and Nonlinear Statics and Dynamics by Mohammad I. Younis Pdf

MEMS Linear and Nonlinear Statics and Dynamics presents the necessary analytical and computational tools for MEMS designers to model and simulate most known MEMS devices, structures, and phenomena. This book also provides an in-depth analysis and treatment of the most common static and dynamic phenomena in MEMS that are encountered by engineers. Coverage also includes nonlinear modeling approaches to modeling various MEMS phenomena of a nonlinear nature, such as those due to electrostatic forces, squeeze-film damping, and large deflection of structures. The book also: Includes examples of numerous MEMS devices and structures that require static or dynamic modeling Provides code for programs in Matlab, Mathematica, and ANSYS for simulating the behavior of MEMS structures Provides real world problems related to the dynamics of MEMS such as dynamics of electrostatically actuated devices, stiction and adhesion of microbeams due to electrostatic and capillary forces MEMS Linear and Nonlinear Statics and Dynamics is an ideal volume for researchers and engineers working in MEMS design and fabrication.

Mechanics of Microsystems

Author : Alberto Corigliano,Raffaele Ardito,Claudia Comi,Attilio Frangi,Aldo Ghisi,Stefano Mariani
Publisher : John Wiley & Sons
Page : 332 pages
File Size : 53,9 Mb
Release : 2018-04-02
Category : Technology & Engineering
ISBN : 9781119053835

Get Book

Mechanics of Microsystems by Alberto Corigliano,Raffaele Ardito,Claudia Comi,Attilio Frangi,Aldo Ghisi,Stefano Mariani Pdf

Mechanics of Microsystems Alberto Corigliano, Raffaele Ardito, Claudia Comi, Attilio Frangi, Aldo Ghisi and Stefano Mariani, Politecnico di Milano, Italy A mechanical approach to microsystems, covering fundamental concepts including MEMS design, modelling and reliability Mechanics of Microsystems takes a mechanical approach to microsystems and covers fundamental concepts including MEMS design, modelling and reliability. The book examines the mechanical behaviour of microsystems from a ‘design for reliability’ point of view and includes examples of applications in industry. Mechanics of Microsystems is divided into two main parts. The first part recalls basic knowledge related to the microsystems behaviour and offers an overview on microsystems and fundamental design and modelling tools from a mechanical point of view, together with many practical examples of real microsystems. The second part covers the mechanical characterization of materials at the micro-scale and considers the most important reliability issues (fracture, fatigue, stiction, damping phenomena, etc) which are fundamental to fabricate a real working device. Key features: Provides an overview of MEMS, with special focus on mechanical-based Microsystems and reliability issues. Includes examples of applications in industry. Accompanied by a website hosting supplementary material. The book provides essential reading for researchers and practitioners working with MEMS, as well as graduate students in mechanical, materials and electrical engineering.

IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics

Author : Giuseppe Rega,F. Vestroni
Publisher : Springer Science & Business Media
Page : 518 pages
File Size : 52,8 Mb
Release : 2006-06-22
Category : Technology & Engineering
ISBN : 9781402032684

Get Book

IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics by Giuseppe Rega,F. Vestroni Pdf

The interest of the applied mechanics community in chaotic dynamics of engineering systems has exploded in the last fifteen years, although research activity on nonlinear dynamical problems in mechanics started well before the end of the Eighties. It developed first within the general context of the classical theory of nonlinear oscillations, or nonlinear vibrations, and of the relevant engineering applications. This was an extremely fertile field in terms of formulation of mechanical and mathematical models, of development of powerful analytical techniques, and of understanding of a number of basic nonlinear phenomena. At about the same time, meaningful theoretical results highlighting new solution methods and new or complex phenomena in the dynamics of deterministic systems were obtained within dynamical systems theory by means of sophisticated geometrical and computational techniques. In recent years, careful experimental studies have been made to establish the actual occurrence and observability of the predicted dynamic phenomena, as it is vitally needed in all engineering fields. Complex dynamics have been shown to characterize the behaviour of a great number of nonlinear mechanical systems, ranging from aerospace engineering applications to naval applications, mechanical engineering, structural engineering, robotics and biomechanics, and other areas. The International Union of Theoretical and Applied Mechanics grasped the importance of such complex phenomena in the Eighties, when the first IUTAM Symposium devoted to the general topic of nonlinear and chaotic dynamics in applied mechanics and engineering was held in Stuttgart (1989).

Principles of Microelectromechanical Systems

Author : Ki Bang Lee
Publisher : John Wiley & Sons
Page : 552 pages
File Size : 44,8 Mb
Release : 2011-03-21
Category : Technology & Engineering
ISBN : 9781118102244

Get Book

Principles of Microelectromechanical Systems by Ki Bang Lee Pdf

The building blocks of MEMS design through closed-form solutions Microelectromechanical Systems, or MEMS, is the technology of very small systems; it is found in everything from inkjet printers and cars to cell phones, digital cameras, and medical equipment. This book describes the principles of MEMS via a unified approach and closed-form solutions to micromechanical problems, which have been recently developed by the author and go beyond what is available in other texts. The closed-form solutions allow the reader to easily understand the linear and nonlinear behaviors of MEMS and their design applications. Beginning with an overview of MEMS, the opening chapter also presents dimensional analysis that provides basic dimensionless parameters existing in large- and small-scale worlds. The book then explains microfabrication, which presents knowledge on the common fabrication process to design realistic MEMS. From there, coverage includes: Statics/force and moment acting on mechanical structures in static equilibrium Static behaviors of structures consisting of mechanical elements Dynamic responses of the mechanical structures by the solving of linear as well as nonlinear governing equations Fluid flow in MEMS and the evaluation of damping force acting on the moving structures Basic equations of electromagnetics that govern the electrical behavior of MEMS Combining the MEMS building blocks to form actuators and sensors for a specific purpose All chapters from first to last use a unified approach in which equations in previous chapters are used in the derivations of closed-form solutions in later chapters. This helps readers to easily understand the problems to be solved and the derived solutions. In addition, theoretical models for the elements and systems in the later chapters are provided, and solutions for the static and dynamic responses are obtained in closed-forms. This book is designed for senior or graduate students in electrical and mechanical engineering, researchers in MEMS, and engineers from industry. It is ideal for radio frequency/electronics/sensor specialists who, for design purposes, would like to forego numerical nonlinear mechanical simulations. The closed-form solution approach will also appeal to device designers interested in performing large-scale parametric analysis.

Analysis and Design Principles of MEMS Devices

Author : Minhang Bao
Publisher : Elsevier
Page : 328 pages
File Size : 50,5 Mb
Release : 2005-04-12
Category : Technology & Engineering
ISBN : 008045562X

Get Book

Analysis and Design Principles of MEMS Devices by Minhang Bao Pdf

Sensors and actuators are now part of our everyday life and appear in many appliances, such as cars, vending machines and washing machines. MEMS (Micro Electro Mechanical Systems) are micro systems consisting of micro mechanical sensors, actuators and micro electronic circuits. A variety of MEMS devices have been developed and many mass produced, but the information on these is widely dispersed in the literature. This book presents the analysis and design principles of MEMS devices. The information is comprehensive, focusing on microdynamics, such as the mechanics of beam and diaphragm structures, air damping and its effect on the motion of mechanical structures. Using practical examples, the author examines problems associated with analysis and design, and solutions are included at the back of the book. The ideal advanced level textbook for graduates, Analysis and Design Principles of MEMS Devices is a suitable source of reference for researchers and engineers in the field. * Presents the analysis and design principles of MEMS devices more systematically than ever before. * Includes the theories essential for the analysis and design of MEMS includes the dynamics of micro mechanical structures * A problem section is included at the end of each chapter with answers provided at the end of the book.

Mems/Nems

Author : Cornelius T. Leondes
Publisher : Springer Science & Business Media
Page : 2094 pages
File Size : 40,9 Mb
Release : 2007-10-08
Category : Technology & Engineering
ISBN : 9780387257860

Get Book

Mems/Nems by Cornelius T. Leondes Pdf

This significant and uniquely comprehensive five-volume reference is a valuable source for research workers, practitioners, computer scientists, students, and technologists. It covers all of the major topics within the subject and offers a comprehensive treatment of MEMS design, fabrication techniques, and manufacturing methods. It also includes current medical applications of MEMS technology and provides applications of MEMS to opto-electronic devices. It is clearly written, self-contained, and accessible, with helpful standard features including an introduction, summary, extensive figures and design examples with comprehensive reference lists.

Mechanics Of Microelectromechanical Systems

Author : Lobontiu Nicolae Et.Al
Publisher : Unknown
Page : 405 pages
File Size : 51,7 Mb
Release : 2007-12-01
Category : Electronic
ISBN : 8181288491

Get Book

Mechanics Of Microelectromechanical Systems by Lobontiu Nicolae Et.Al Pdf

MEMS and NEMS

Author : Sergey Edward Lyshevski
Publisher : CRC Press
Page : 263 pages
File Size : 49,5 Mb
Release : 2018-10-03
Category : Technology & Engineering
ISBN : 9781351836135

Get Book

MEMS and NEMS by Sergey Edward Lyshevski Pdf

The development of micro- and nano-mechanical systems (MEMS and NEMS) foreshadows momentous changes not only in the technological world, but in virtually every aspect of human life. The future of the field is bright with opportunities, but also riddled with challenges, ranging from further theoretical development through advances in fabrication technologies, to developing high-performance nano- and microscale systems, devices, and structures, including transducers, switches, logic gates, actuators and sensors. MEMS and NEMS: Systems, Devices, and Structures is designed to help you meet those challenges and solve fundamental, experimental, and applied problems. Written from a multi-disciplinary perspective, this book forms the basis for the synthesis, modeling, analysis, simulation, control, prototyping, and fabrication of MEMS and NEMS. The author brings together the various paradigms, methods, and technologies associated with MEMS and NEMS to show how to synthesize, analyze, design, and fabricate them. Focusing on the basics, he illustrates the development of NEMS and MEMS architectures, physical representations, structural synthesis, and optimization. The applications of MEMS and NEMS in areas such as biotechnology, medicine, avionics, transportation, and defense are virtually limitless. This book helps prepare you to take advantage of their inherent opportunities and effectively solve problems related to their configurations, systems integration, and control.

Advances in Multiphysics Simulation and Experimental Testing of MEMS

Author : Attilio Frangi
Publisher : World Scientific
Page : 504 pages
File Size : 52,9 Mb
Release : 2008
Category : Science
ISBN : 9781860948626

Get Book

Advances in Multiphysics Simulation and Experimental Testing of MEMS by Attilio Frangi Pdf

This volume takes a much needed multiphysical approach to the numerical and experimental evaluation of the mechanical properties of MEMS and NEMS. The contributed chapters present many of the most recent developments in fields ranging from microfluids and damping to structural analysis, topology optimization and nanoscale simulations. The book responds to a growing need emerging in academia and industry to merge different areas of expertise towards a unified design and analysis of MEMS and NEMS.

System Dynamics for Engineering Students

Author : Nicolae Lobontiu
Publisher : Academic Press
Page : 786 pages
File Size : 52,7 Mb
Release : 2017-08-29
Category : Technology & Engineering
ISBN : 9780124172098

Get Book

System Dynamics for Engineering Students by Nicolae Lobontiu Pdf

Engineering system dynamics focuses on deriving mathematical models based on simplified physical representations of actual systems, such as mechanical, electrical, fluid, or thermal, and on solving these models for analysis or design purposes. System Dynamics for Engineering Students: Concepts and Applications features a classical approach to system dynamics and is designed to be utilized as a one-semester system dynamics text for upper-level undergraduate students with emphasis on mechanical, aerospace, or electrical engineering. It is the first system dynamics textbook to include examples from compliant (flexible) mechanisms and micro/nano electromechanical systems (MEMS/NEMS). This new second edition has been updated to provide more balance between analytical and computational approaches; introduces additional in-text coverage of Controls; and includes numerous fully solved examples and exercises. Features a more balanced treatment of mechanical, electrical, fluid, and thermal systems than other texts Introduces examples from compliant (flexible) mechanisms and MEMS/NEMS Includes a chapter on coupled-field systems Incorporates MATLAB® and Simulink® computational software tools throughout the book Supplements the text with extensive instructor support available online: instructor's solution manual, image bank, and PowerPoint lecture slides NEW FOR THE SECOND EDITION Provides more balance between analytical and computational approaches, including integration of Lagrangian equations as another modelling technique of dynamic systems Includes additional in-text coverage of Controls, to meet the needs of schools that cover both controls and system dynamics in the course Features a broader range of applications, including additional applications in pneumatic and hydraulic systems, and new applications in aerospace, automotive, and bioengineering systems, making the book even more appealing to mechanical engineers Updates include new and revised examples and end-of-chapter exercises with a wider variety of engineering applications

Harnessing Bistable Structural Dynamics

Author : Ryan L. Harne,Kon-Well Wang
Publisher : John Wiley & Sons
Page : 408 pages
File Size : 50,7 Mb
Release : 2017-01-06
Category : Technology & Engineering
ISBN : 9781119128069

Get Book

Harnessing Bistable Structural Dynamics by Ryan L. Harne,Kon-Well Wang Pdf

This book formulates and consolidates a coherent understanding of how harnessing the dynamics of bistable structures may enhance the technical fields of vibration control, energy harvesting, and sensing. Theoretical rigor and practical experimental insights are provided in numerous case studies. The three fields have received significant research interest in recent years, particularly in regards to the advantageous exploitation of nonlinearities. Harnessing the dynamics of bistable structures--that is, systems with two configurations of static equilibria--is a popular subset of the recent efforts. This book provides a timely consolidation of the advancements that are relevant to a large body of active researchers and engineers in these areas of understanding and leveraging nonlinearities for engineering applications. Coverage includes: Provides a one-source reference on how bistable system dynamics may enhance the aims of vibration control, energy harvesting, and sensing with a breadth of case studies Includes details for comprehensive methods of analysis, numerical simulation, and experimentation that are widely useful in the assessment of the dynamics of bistable structures Details approaches to evaluate, by analytical and numerical analysis and experiment, the influences of harmonic and random excitations, multiple degrees-of-freedom, and electromechanical coupling towards tailoring the underlying bistable system dynamics Establishes how intelligently utilizing bistability could enable technology advances that would be useful in various industries, such as automotive engineering, aerospace systems, microsystems and microelectronics, and manufacturing

Principles of Microelectromechanical Systems

Author : Ki Bang Lee
Publisher : John Wiley & Sons
Page : 0 pages
File Size : 40,6 Mb
Release : 2011-02-02
Category : Technology & Engineering
ISBN : 0470466340

Get Book

Principles of Microelectromechanical Systems by Ki Bang Lee Pdf

The building blocks of MEMS design through closed-form solutions Microelectromechanical Systems, or MEMS, is the technology of very small systems; it is found in everything from inkjet printers and cars to cell phones, digital cameras, and medical equipment. This book describes the principles of MEMS via a unified approach and closed-form solutions to micromechanical problems, which have been recently developed by the author and go beyond what is available in other texts. The closed-form solutions allow the reader to easily understand the linear and nonlinear behaviors of MEMS and their design applications. Beginning with an overview of MEMS, the opening chapter also presents dimensional analysis that provides basic dimensionless parameters existing in large- and small-scale worlds. The book then explains microfabrication, which presents knowledge on the common fabrication process to design realistic MEMS. From there, coverage includes: Statics/force and moment acting on mechanical structures in static equilibrium Static behaviors of structures consisting of mechanical elements Dynamic responses of the mechanical structures by the solving of linear as well as nonlinear governing equations Fluid flow in MEMS and the evaluation of damping force acting on the moving structures Basic equations of electromagnetics that govern the electrical behavior of MEMS Combining the MEMS building blocks to form actuators and sensors for a specific purpose All chapters from first to last use a unified approach in which equations in previous chapters are used in the derivations of closed-form solutions in later chapters. This helps readers to easily understand the problems to be solved and the derived solutions. In addition, theoretical models for the elements and systems in the later chapters are provided, and solutions for the static and dynamic responses are obtained in closed-forms. This book is designed for senior or graduate students in electrical and mechanical engineering, researchers in MEMS, and engineers from industry. It is ideal for radio frequency/electronics/sensor specialists who, for design purposes, would like to forego numerical nonlinear mechanical simulations. The closed-form solution approach will also appeal to device designers interested in performing large-scale parametric analysis.