Emergent States In Photoinduced Charge Density Wave Transitions

Emergent States In Photoinduced Charge Density Wave Transitions Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Emergent States In Photoinduced Charge Density Wave Transitions book. This book definitely worth reading, it is an incredibly well-written.

Emergent States in Photoinduced Charge-Density-Wave Transitions

Author : Alfred Zong
Publisher : Unknown
Page : 0 pages
File Size : 50,8 Mb
Release : 2021
Category : Electronic
ISBN : 3030817520

Get Book

Emergent States in Photoinduced Charge-Density-Wave Transitions by Alfred Zong Pdf

This book advances understanding of light-induced phase transitions and nonequilibrium orders that occur in a broken-symmetry system. Upon excitation with an intense laser pulse, materials can undergo a nonthermal transition through pathways different from those in equilibrium. The mechanism underlying these photoinduced phase transitions has long been researched, but many details in this ultrafast, non-adiabatic regime still remain to be clarified. The work in this book reveals new insights into this phenomena via investigation of photoinduced melting and recovery of charge density waves (CDWs). Using several time-resolved diffraction and spectroscopic techniques, the author shows that the light-induced melting of a CDW is characterized by dynamical slowing-down, while the restoration of the symmetry-breaking order features two distinct timescales: A fast recovery of the CDW amplitude is followed by a slower re-establishment of phase coherence, the latter of which is dictated by the presence of topological defects in the CDW. Furthermore, after the suppression of the original CDW by photoexcitation, a different, competing CDW transiently emerges, illustrating how a hidden order in equilibrium can be unleashed by a laser pulse. These insights into CDW systems may be carried over to other broken-symmetry states, such as superconductivity and magnetic ordering, bringing us one step closer towards manipulating phases of matter using a laser pulse.

Emergent States in Photoinduced Charge-Density-Wave Transitions

Author : Alfred Zong
Publisher : Springer Nature
Page : 234 pages
File Size : 53,6 Mb
Release : 2021-09-17
Category : Science
ISBN : 9783030817510

Get Book

Emergent States in Photoinduced Charge-Density-Wave Transitions by Alfred Zong Pdf

This book advances understanding of light-induced phase transitions and nonequilibrium orders that occur in a broken-symmetry system. Upon excitation with an intense laser pulse, materials can undergo a nonthermal transition through pathways different from those in equilibrium. The mechanism underlying these photoinduced phase transitions has long been researched, but many details in this ultrafast, non-adiabatic regime still remain to be clarified. The work in this book reveals new insights into this phenomena via investigation of photoinduced melting and recovery of charge density waves (CDWs). Using several time-resolved diffraction and spectroscopic techniques, the author shows that the light-induced melting of a CDW is characterized by dynamical slowing-down, while the restoration of the symmetry-breaking order features two distinct timescales: A fast recovery of the CDW amplitude is followed by a slower re-establishment of phase coherence, the latter of which is dictated by the presence of topological defects in the CDW. Furthermore, after the suppression of the original CDW by photoexcitation, a different, competing CDW transiently emerges, illustrating how a hidden order in equilibrium can be unleashed by a laser pulse. These insights into CDW systems may be carried over to other broken-symmetry states, such as superconductivity and magnetic ordering, bringing us one step closer towards manipulating phases of matter using a laser pulse.

Density Waves In Solids

Author : George Gruner
Publisher : CRC Press
Page : 288 pages
File Size : 46,5 Mb
Release : 2018-03-08
Category : Science
ISBN : 9780429969560

Get Book

Density Waves In Solids by George Gruner Pdf

?Density Waves in Solids is written for graduate students and scientists interested in solid-state sciences. It discusses the theoretical and experimental state of affairs of two novel types of broken symmetry ground states of metals, charge, and spin density waves. These states arise as the consequence of electron-phonon and electron-electron interactions in low-dimensional metals.Some fundamental aspects of the one-dimensional electron gas, and of the materials with anisotropic properties, are discussed first. This is followed by the mean field theory of the phases transitions?discussed using second quantized formalism?together with the various experimental observations on the transition and on the ground states. Fluctuation effects and the collective excitations are reviewed next, using the Ginzburg-Landau formalism, followed by the review of the interaction of these states with the underlying lattice and with impurities. The final chapters are devoted to the response of the ground states to external perturbations.

Government Reports Annual Index

Author : Anonim
Publisher : Unknown
Page : 1312 pages
File Size : 52,7 Mb
Release : 1990
Category : Government reports announcements & index
ISBN : MINN:30000001970726

Get Book

Government Reports Annual Index by Anonim Pdf

Emergent Phenomena in Correlated Matter

Author : Eva Pavarini,Erik Koch,Ulrich Schollwöck
Publisher : Forschungszentrum Jülich
Page : 562 pages
File Size : 49,9 Mb
Release : 2013
Category : Electronic
ISBN : 9783893368846

Get Book

Emergent Phenomena in Correlated Matter by Eva Pavarini,Erik Koch,Ulrich Schollwöck Pdf

4D Electron Microscopy

Author : Ahmed H Zewail,John M Thomas
Publisher : World Scientific
Page : 360 pages
File Size : 47,9 Mb
Release : 2009-12-24
Category : Science
ISBN : 9781908978431

Get Book

4D Electron Microscopy by Ahmed H Zewail,John M Thomas Pdf

The modern electron microscope, as a result of recent revolutionary developments and many evolutionary ones, now yields a wealth of quantitative knowledge pertaining to structure, dynamics, and function barely matched by any other single scientific instrument. It is also poised to contribute much new spatially-resolved and time-resolved insights of central importance in the exploration of most aspects of condensed matter, ranging from the physical to the biological sciences. Whereas in all conventional EM methods, imaging, diffraction, and chemical analyses have been conducted in a static — time-integrated — manner, now it has become possible to unite the time domain with the spatial one, thereby creating four-dimensional (4D) electron microscopy. This advance is based on the fundamental concept of timed, coherent single-electron packets, or electron pulses, which are liberated with femtosecond durations. Structural phase transitions, mechanical deformations, and the embryonic stages of melting and crystallization are examples of phenomena that can now be imaged in unprecedented structural detail with high spatial resolution, and ten orders of magnitude as fast as hitherto. No monograph in existence attempts to cover the revolutionary dimensions that EM in its various modes of operation nowadays makes possible. The authors of this book chart these developments, and also compare the merits of coherent electron waves with those of synchrotron radiation. They judge it prudent to recall some important basic procedural and theoretical aspects of imaging and diffraction so that the reader may better comprehend the significance of the new vistas and applications now afoot. This book is not a vade mecum — numerous other texts are available for the practitioner for that purpose. It is instead an in-depth exposé of the paradigm concepts and the developed techniques that can now be executed to gain new knowledge in the entire domain of biological and physical science, and in the four dimensions of space and time. Contents: Historical Perspectives: From Camera Obscura to 4D ImagingConcepts of Coherence: Optics, Diffraction, and ImagingFrom 2D to 3D Structural Imaging: Salient ConceptsApplications of 2D and 3D Imaging and Related Techniques4D Electron Imaging in Space and Time: Principles4D Ultrafast Electron Imaging: Developments and ApplicationsThe Electron Microscope and the Synchrotron: A Comparison4D Visualization: Past, Present, and Future Readership: Academics and researchers in the fields of physical chemistry, chemical analysis, solid state physics, electron microscopy, scanning, tunnelling, nanoelectronics, molecular biology, molecular imaging and structural biology. Keywords:Reviews:“This is a unique and ground-breaking book. For the first time it includes the important time dimension in electron microscopy, revealing time-resolved electron micrographs and diffraction patterns on an almost unbelievably fast time scale. The book is written with great clarity and is lavishly illustrated with some stunning micrographs.”Professor Colin Humphreys Cambridge University, UK “This book, by leaders in femtosecond spectroscopy and solid-state chemistry, gives an exciting overview of the new field of time-resolved transmission electron microscopy … Despite the enormous challenges in this new field, this stimulating book from these authorities should be read by all graduate students about to choose a field of research. A book to make the experts think.”Professor John Spence Arizona State University, USA “This is one of the most enlightening science textbooks I have ever read. The basic concepts behind 3D and 4D electron microscopy are presented in a concise and clear language, accompanied by figures of remarkable didactic content. This excellent textbook blends the qualities of an introductory with an in-depth account, and is bound to become a reference in the field.”Professor Majed Chergui EPFL, Lausanne, Switzerland “This is a fascinating book, very timely published when electron microscopy (EM) is at a turning point with dramatically improved capacities … The description of scattering of electrons and the function of the electron microscope is sufficiently complete to make this book well suited as a university textbook.”Crystallography Reviews “Combining the authors' expertise in femtochemistry, catalysis, and electron microscopy has resulted in a book that conveys the excitement and potential for this new paradigm in electron imaging … there is no doubt that the development of the 4D microscope has introduced a new paradigm for characterization by TEM. Taken together with introductory texts covering TEM, it provides the understanding necessary for the reader to appreciate the principles of this brand new field.”Journal of the American Chemistry Society “Researchers using electron microscopy will find this book fascinating and very helpful for learning about the latest advances in electron microscopy imaging technology.”IEEE Electrical Insulation Magazine “The renowned authors of this new appearance on time-resolved 3D electron microscopy have created a fantastic book that will appeal to a broad range of scientists. Its topic and breadth will surely be of interest to those interested in physics, material science, and solid-state chemistry … The expertise of the authors and the clear, well-documented nature of the book combine to lend it great potential to set the standard in this field.”Angewandte Chemie “It is for the 'ultrafast' chapters that the book will be read for these contain new and very unfamiliar material. The book is handsomely produced with all the illustrations on a Cambridge blue background.”Ultramicroscopy “The expert reader, who believes to know every aspect regarding electron microscopy, will discover many new and inspiring elements. For the electron microscopy layman it will ignite a fire for this exciting, trans-disciplinary subject area.”Prof. Dr. Armin Feldhoff Leibniz University Hannover

Two Dimensional Transition Metal Dichalcogenides

Author : Narayanasamy Sabari Arul,Vellalapalayam Devaraj Nithya
Publisher : Springer
Page : 355 pages
File Size : 42,8 Mb
Release : 2019-07-30
Category : Technology & Engineering
ISBN : 9789811390456

Get Book

Two Dimensional Transition Metal Dichalcogenides by Narayanasamy Sabari Arul,Vellalapalayam Devaraj Nithya Pdf

This book presents advanced synthesis techniques adopted to fabricate two-dimensional (2D) transition metal dichalcogenides (TMDs) materials with its enhanced properties towards their utilization in various applications such as, energy storage devices, photovoltaics, electrocatalysis, electronic devices, photocatalysts, sensing and biomedical applications. It provides detailed coverage on everything from the synthesis and properties to the applications and future prospects of research in 2D TMD nanomaterials.

Colloidal Quantum Dot Optoelectronics and Photovoltaics

Author : Gerasimos Konstantatos,Edward H. Sargent
Publisher : Cambridge University Press
Page : 329 pages
File Size : 48,5 Mb
Release : 2013-11-07
Category : Science
ISBN : 9780521198264

Get Book

Colloidal Quantum Dot Optoelectronics and Photovoltaics by Gerasimos Konstantatos,Edward H. Sargent Pdf

Captures the most up-to-date research in the field, written in an accessible style by the world's leading experts.

Applied Photochemistry

Author : Rachel C. Evans,Peter Douglas,Hugh D. Burrow
Publisher : Springer Science & Business Media
Page : 598 pages
File Size : 50,8 Mb
Release : 2014-07-08
Category : Science
ISBN : 9789048138302

Get Book

Applied Photochemistry by Rachel C. Evans,Peter Douglas,Hugh D. Burrow Pdf

Applied Photochemistry encompasses the major applications of the chemical effects resulting from light absorption by atoms and molecules in chemistry, physics, medicine and engineering, and contains contributions from specialists in these key areas. Particular emphasis is placed both on how photochemistry contributes to these disciplines and on what the current developments are. The book starts with a general description of the interaction between light and matter, which provides the general background to photochemistry for non-specialists. The following chapters develop the general synthetic and mechanistic aspects of photochemistry as applied to both organic and inorganic materials, together with types of materials which are useful as light absorbers, emitters, sensitisers, etc. for a wide variety of applications. A detailed discussion is presented on the photochemical processes occurring in the Earth’s atmosphere, including discussion of important current aspects such as ozone depletion. Two important distinct, but interconnected, applications of photochemistry are in photocatalytic treatment of wastes and in solar energy conversion. Semiconductor photochemistry plays an important role in these and is discussed with reference to both of these areas. Free radicals and reactive oxygen species are of major importance in many chemical, biological and medical applications of photochemistry, and are discussed in depth. The following chapters discuss the relevance of using light in medicine, both with various types of phototherapy and in medical diagnostics. The development of optical sensors and probes is closely related to diagnostics, but is also relevant to many other applications, and is discussed separately. Important aspects of applied photochemistry in electronics and imaging, through processes such as photolithography, are discussed and it is shown how this is allowing the increasing miniaturisation of semiconductor devices for a wide variety of electronics applications and the development of nanometer scale devices. The final two chapters provide the basic ideas necessary to set up a photochemical laboratory and to characterise excited states. This book is aimed at those in science, engineering and medicine who are interested in applying photochemistry in a broad spectrum of areas. Each chapter has the basic theories and methods for its particular applications and directs the reader to the current, important literature in the field, making Applied Photochemistry suitable for both the novice and the experienced photochemist.

Functional Supramolecular Materials

Author : Rahul Banerjee
Publisher : Royal Society of Chemistry
Page : 461 pages
File Size : 43,9 Mb
Release : 2017-05-05
Category : Science
ISBN : 9781788010276

Get Book

Functional Supramolecular Materials by Rahul Banerjee Pdf

Supramolecular materials have a great number of applications due to the reversibility of their non-covalent molecular interactions, such as reversible hydrogen bonding, host–guest interactions and electrostatic interactions. This book provides a comprehensive source of information on the structure and function of organic and metal–organic supramolecular materials. The chapters of this book provide an overview of supramolecular material assembly at various scales, including the formation of 2D polymers and molecular cages. The role of intermolecular interactions in solid and solution state self-assembly is discussed, as is the role of mechanochemistry on molecular and supramolecular architectures. Finally, novel applications of these materials in molecular recognition, catalysis, light harvesting and environmental remediation are covered. Functional Supramolecular Materials will be of interest to graduate students and researchers in academia and industry in the fields of supramolecular chemistry and functional materials science.

Principles of Condensed Matter Physics

Author : P. M. Chaikin,T. C. Lubensky
Publisher : Cambridge University Press
Page : 724 pages
File Size : 46,5 Mb
Release : 2000-09-28
Category : Science
ISBN : 9781139643054

Get Book

Principles of Condensed Matter Physics by P. M. Chaikin,T. C. Lubensky Pdf

Now in paperback, this book provides an overview of the physics of condensed matter systems. Assuming a familiarity with the basics of quantum mechanics and statistical mechanics, the book establishes a general framework for describing condensed phases of matter, based on symmetries and conservation laws. It explores the role of spatial dimensionality and microscopic interactions in determining the nature of phase transitions, as well as discussing the structure and properties of materials with different symmetries. Particular attention is given to critical phenomena and renormalization group methods. The properties of liquids, liquid crystals, quasicrystals, crystalline solids, magnetically ordered systems and amorphous solids are investigated in terms of their symmetry, generalised rigidity, hydrodynamics and topological defect structure. In addition to serving as a course text, this book is an essential reference for students and researchers in physics, applied physics, chemistry, materials science and engineering, who are interested in modern condensed matter physics.

Transmission Electron Microscopy

Author : David B. Williams,C. Barry Carter
Publisher : Springer Science & Business Media
Page : 708 pages
File Size : 49,6 Mb
Release : 2013-03-09
Category : Science
ISBN : 9781475725193

Get Book

Transmission Electron Microscopy by David B. Williams,C. Barry Carter Pdf

Electron microscopy has revolutionized our understanding the extraordinary intellectual demands required of the mi of materials by completing the processing-structure-prop croscopist in order to do the job properly: crystallography, erties links down to atomistic levels. It now is even possible diffraction, image contrast, inelastic scattering events, and to tailor the microstructure (and meso structure ) of materials spectroscopy. Remember, these used to be fields in them to achieve specific sets of properties; the extraordinary abili selves. Today, one has to understand the fundamentals ties of modem transmission electron microscopy-TEM of all of these areas before one can hope to tackle signifi instruments to provide almost all of the structural, phase, cant problems in materials science. TEM is a technique of and crystallographic data allow us to accomplish this feat. characterizing materials down to the atomic limits. It must Therefore, it is obvious that any curriculum in modem mate be used with care and attention, in many cases involving rials education must include suitable courses in electron mi teams of experts from different venues. The fundamentals croscopy. It is also essential that suitable texts be available are, of course, based in physics, so aspiring materials sci for the preparation of the students and researchers who must entists would be well advised to have prior exposure to, for carry out electron microscopy properly and quantitatively.

Iontronics

Author : Janelle Leger,Magnus Berggren,Sue Carter
Publisher : CRC Press
Page : 238 pages
File Size : 49,8 Mb
Release : 2016-04-19
Category : Science
ISBN : 9781439806890

Get Book

Iontronics by Janelle Leger,Magnus Berggren,Sue Carter Pdf

With contributions from a community of experts, the book focuses on the use of ionic functions to define the principle of operation in polymer devices. It begins by reviewing the scientific understanding and important scientific discoveries made on the electrochemistry of conjugated polymers. It examines the known effects of ion incorporation, including the theory and modulation of electrochemistry in polymer films, and it explores the coupling of electronic and ionic transport in polymer films.

Structural Phase Transitions in Layered Transition Metal Compounds

Author : K. Motizuki
Publisher : Springer Science & Business Media
Page : 309 pages
File Size : 40,6 Mb
Release : 2012-12-06
Category : Science
ISBN : 9789400945760

Get Book

Structural Phase Transitions in Layered Transition Metal Compounds by K. Motizuki Pdf

The structural phase transition is one of the most fundamental problems in solid state physics. Layered transition-metal dichalcogenides provide us with a most exciting area for the study of structural phase transitions that are associated with the charge density wave (CDW). A large variety of structural phase transitions, such as commensurate and incommensurate transitions, and the physical proper ties related to the formation of a CDW, have been an object of intense study made for many years by methods employing modem microscopic techniques. Rather recently, efforts have been devoted to the theoretical understanding of these experimental results. Thus, McMillan, for example, has developed an elegant phenomenological theory on the basis of the Landau free energy expansion. An extension of McMillan's theory has provided a successful understanding of the successive phase transitions observed in the IT- and 2H-compounds. In addition, a microscopic theory of lattice instability, lattice dynamics, and lattice distortion in the CDW state of the transition-metal dichalcogenides has been developed based on their electronic structures. As a result, the driving force of the CDW formation in the IT- and 2H-compounds has become clear. Furthermore, the effect of lattice fluctuations on the CDW transition and on the anomalous behavior of various physical properties has been made clear microscopically.

Ab Initio Molecular Dynamics

Author : Dominik Marx,Jürg Hutter
Publisher : Cambridge University Press
Page : 503 pages
File Size : 50,7 Mb
Release : 2009-04-30
Category : Science
ISBN : 9781139477192

Get Book

Ab Initio Molecular Dynamics by Dominik Marx,Jürg Hutter Pdf

Ab initio molecular dynamics revolutionized the field of realistic computer simulation of complex molecular systems and processes, including chemical reactions, by unifying molecular dynamics and electronic structure theory. This book provides the first coherent presentation of this rapidly growing field, covering a vast range of methods and their applications, from basic theory to advanced methods. This fascinating text for graduate students and researchers contains systematic derivations of various ab initio molecular dynamics techniques to enable readers to understand and assess the merits and drawbacks of commonly used methods. It also discusses the special features of the widely used Car–Parrinello approach, correcting various misconceptions currently found in research literature. The book contains pseudo-code and program layout for typical plane wave electronic structure codes, allowing newcomers to the field to understand commonly used program packages and enabling developers to improve and add new features in their code.