Geometric Methods And Optimization Problems

Geometric Methods And Optimization Problems Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Geometric Methods And Optimization Problems book. This book definitely worth reading, it is an incredibly well-written.

Geometric Methods and Optimization Problems

Author : Vladimir Boltyanski,Horst Martini,V. Soltan
Publisher : Springer Science & Business Media
Page : 438 pages
File Size : 54,7 Mb
Release : 2013-12-11
Category : Mathematics
ISBN : 9781461553199

Get Book

Geometric Methods and Optimization Problems by Vladimir Boltyanski,Horst Martini,V. Soltan Pdf

VII Preface In many fields of mathematics, geometry has established itself as a fruitful method and common language for describing basic phenomena and problems as well as suggesting ways of solutions. Especially in pure mathematics this is ob vious and well-known (examples are the much discussed interplay between lin ear algebra and analytical geometry and several problems in multidimensional analysis). On the other hand, many specialists from applied mathematics seem to prefer more formal analytical and numerical methods and representations. Nevertheless, very often the internal development of disciplines from applied mathematics led to geometric models, and occasionally breakthroughs were b~ed on geometric insights. An excellent example is the Klee-Minty cube, solving a problem of linear programming by transforming it into a geomet ric problem. Also the development of convex programming in recent decades demonstrated the power of methods that evolved within the field of convex geometry. The present book focuses on three applied disciplines: control theory, location science and computational geometry. It is our aim to demonstrate how methods and topics from convex geometry in a wider sense (separation theory of convex cones, Minkowski geometry, convex partitionings, etc.) can help to solve various problems from these disciplines.

Elements of Classical and Geometric Optimization

Author : Debasish Roy,G Visweswara Rao
Publisher : CRC Press
Page : 525 pages
File Size : 44,9 Mb
Release : 2024-01-25
Category : Technology & Engineering
ISBN : 9781000914443

Get Book

Elements of Classical and Geometric Optimization by Debasish Roy,G Visweswara Rao Pdf

This comprehensive textbook covers both classical and geometric aspects of optimization using methods, deterministic and stochastic, in a single volume and in a language accessible to non-mathematicians. It will help serve as an ideal study material for senior undergraduate and graduate students in the fields of civil, mechanical, aerospace, electrical, electronics, and communication engineering. The book includes: Derivative-based Methods of Optimization. Direct Search Methods of Optimization. Basics of Riemannian Differential Geometry. Geometric Methods of Optimization using Riemannian Langevin Dynamics. Stochastic Analysis on Manifolds and Geometric Optimization Methods. This textbook comprehensively treats both classical and geometric optimization methods, including deterministic and stochastic (Monte Carlo) schemes. It offers an extensive coverage of important topics including derivative-based methods, penalty function methods, method of gradient projection, evolutionary methods, geometric search using Riemannian Langevin dynamics and stochastic dynamics on manifolds. The textbook is accompanied by online resources including MATLAB codes which are uploaded on our website. The textbook is primarily written for senior undergraduate and graduate students in all applied science and engineering disciplines and can be used as a main or supplementary text for courses on classical and geometric optimization.

Geometric Methods and Applications

Author : Jean Gallier
Publisher : Springer Science & Business Media
Page : 584 pages
File Size : 52,7 Mb
Release : 2012-12-06
Category : Mathematics
ISBN : 9781461301370

Get Book

Geometric Methods and Applications by Jean Gallier Pdf

As an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book fills the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics that do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine, projective, computational, and Euclidean geometry, basics of differential geometry and Lie groups, and explores many of the practical applications of geometry. Some of these include computer vision, efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers.

Geometric Algorithms and Combinatorial Optimization

Author : Martin Grötschel,Laszlo Lovasz,Alexander Schrijver
Publisher : Springer Science & Business Media
Page : 374 pages
File Size : 53,9 Mb
Release : 2012-12-06
Category : Mathematics
ISBN : 9783642978814

Get Book

Geometric Algorithms and Combinatorial Optimization by Martin Grötschel,Laszlo Lovasz,Alexander Schrijver Pdf

Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.

Deterministic Global Optimization

Author : Daniel Scholz
Publisher : Springer Science & Business Media
Page : 153 pages
File Size : 42,9 Mb
Release : 2011-11-06
Category : Mathematics
ISBN : 9781461419518

Get Book

Deterministic Global Optimization by Daniel Scholz Pdf

This monograph deals with a general class of solution approaches in deterministic global optimization, namely the geometric branch-and-bound methods which are popular algorithms, for instance, in Lipschitzian optimization, d.c. programming, and interval analysis.It also introduces a new concept for the rate of convergence and analyzes several bounding operations reported in the literature, from the theoretical as well as from the empirical point of view. Furthermore, extensions of the prototype algorithm for multicriteria global optimization problems as well as mixed combinatorial optimization problems are considered. Numerical examples based on facility location problems support the theory. Applications of geometric branch-and-bound methods, namely the circle detection problem in image processing, the integrated scheduling and location makespan problem, and the median line location problem in the three-dimensional space are also presented. The book is intended for both researchers and students in the areas of mathematics, operations research, engineering, and computer science.

Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control

Author : Boris S. Mordukhovich,Hector J. Sussmann
Publisher : Springer Science & Business Media
Page : 256 pages
File Size : 50,8 Mb
Release : 2012-12-06
Category : Mathematics
ISBN : 9781461384892

Get Book

Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control by Boris S. Mordukhovich,Hector J. Sussmann Pdf

This IMA Volume in Mathematics and its Applications NONSMOOTH ANALYSIS AND GEOMETRIC METHODS IN DETERMINISTIC OPTIMAL CONTROL is based on the proceedings of a workshop that was an integral part of the 1992-93 IMA program on "Control Theory. " The purpose of this workshop was to concentrate on powerful mathematical techniques that have been de veloped in deterministic optimal control theory after the basic foundations of the theory (existence theorems, maximum principle, dynamic program ming, sufficiency theorems for sufficiently smooth fields of extremals) were laid out in the 1960s. These advanced techniques make it possible to derive much more detailed information about the structure of solutions than could be obtained in the past, and they support new algorithmic approaches to the calculation of such solutions. We thank Boris S. Mordukhovich and Hector J. Sussmann for organiz ing the workshop and editing the proceedings. We also take this oppor tunity to thank the National Science Foundation and the Army Research Office, whose financial support made the workshop possible. A vner Friedman Willard Miller, Jr. v PREFACE This volume contains the proceedings of the workshop on Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control held at the Institute for Mathematics and its Applications on February 8-17, 1993 during a special year devoted to Control Theory and its Applications. The workshop-whose organizing committee consisted of V. J urdjevic, B. S. Mordukhovich, R. T. Rockafellar, and H. J.

Probability Theory of Classical Euclidean Optimization Problems

Author : Joseph E. Yukich
Publisher : Springer
Page : 162 pages
File Size : 49,5 Mb
Release : 2006-11-14
Category : Mathematics
ISBN : 9783540696278

Get Book

Probability Theory of Classical Euclidean Optimization Problems by Joseph E. Yukich Pdf

This monograph describes the stochastic behavior of the solutions to the classic problems of Euclidean combinatorial optimization, computational geometry, and operations research. Using two-sided additivity and isoperimetry, it formulates general methods describing the total edge length of random graphs in Euclidean space. The approach furnishes strong laws of large numbers, large deviations, and rates of convergence for solutions to the random versions of various classic optimization problems, including the traveling salesman, minimal spanning tree, minimal matching, minimal triangulation, two-factor, and k-median problems. Essentially self-contained, this monograph may be read by probabilists, combinatorialists, graph theorists, and theoretical computer scientists.

Handbook of Variational Methods for Nonlinear Geometric Data

Author : Philipp Grohs,Martin Holler,Andreas Weinmann
Publisher : Springer Nature
Page : 701 pages
File Size : 49,9 Mb
Release : 2020-04-03
Category : Mathematics
ISBN : 9783030313517

Get Book

Handbook of Variational Methods for Nonlinear Geometric Data by Philipp Grohs,Martin Holler,Andreas Weinmann Pdf

This book covers different, current research directions in the context of variational methods for non-linear geometric data. Each chapter is authored by leading experts in the respective discipline and provides an introduction, an overview and a description of the current state of the art. Non-linear geometric data arises in various applications in science and engineering. Examples of nonlinear data spaces are diverse and include, for instance, nonlinear spaces of matrices, spaces of curves, shapes as well as manifolds of probability measures. Applications can be found in biology, medicine, product engineering, geography and computer vision for instance. Variational methods on the other hand have evolved to being amongst the most powerful tools for applied mathematics. They involve techniques from various branches of mathematics such as statistics, modeling, optimization, numerical mathematics and analysis. The vast majority of research on variational methods, however, is focused on data in linear spaces. Variational methods for non-linear data is currently an emerging research topic. As a result, and since such methods involve various branches of mathematics, there is a plethora of different, recent approaches dealing with different aspects of variational methods for nonlinear geometric data. Research results are rather scattered and appear in journals of different mathematical communities. The main purpose of the book is to account for that by providing, for the first time, a comprehensive collection of different research directions and existing approaches in this context. It is organized in a way that leading researchers from the different fields provide an introductory overview of recent research directions in their respective discipline. As such, the book is a unique reference work for both newcomers in the field of variational methods for non-linear geometric data, as well as for established experts that aim at to exploit new research directions or collaborations. Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com.

Geometric Optimal Control

Author : Heinz Schättler,Urszula Ledzewicz
Publisher : Springer Science & Business Media
Page : 652 pages
File Size : 50,8 Mb
Release : 2012-06-26
Category : Mathematics
ISBN : 9781461438342

Get Book

Geometric Optimal Control by Heinz Schättler,Urszula Ledzewicz Pdf

This book gives a comprehensive treatment of the fundamental necessary and sufficient conditions for optimality for finite-dimensional, deterministic, optimal control problems. The emphasis is on the geometric aspects of the theory and on illustrating how these methods can be used to solve optimal control problems. It provides tools and techniques that go well beyond standard procedures and can be used to obtain a full understanding of the global structure of solutions for the underlying problem. The text includes a large number and variety of fully worked out examples that range from the classical problem of minimum surfaces of revolution to cancer treatment for novel therapy approaches. All these examples, in one way or the other, illustrate the power of geometric techniques and methods. The versatile text contains material on different levels ranging from the introductory and elementary to the advanced. Parts of the text can be viewed as a comprehensive textbook for both advanced undergraduate and all level graduate courses on optimal control in both mathematics and engineering departments. The text moves smoothly from the more introductory topics to those parts that are in a monograph style were advanced topics are presented. While the presentation is mathematically rigorous, it is carried out in a tutorial style that makes the text accessible to a wide audience of researchers and students from various fields, including the mathematical sciences and engineering. Heinz Schättler is an Associate Professor at Washington University in St. Louis in the Department of Electrical and Systems Engineering, Urszula Ledzewicz is a Distinguished Research Professor at Southern Illinois University Edwardsville in the Department of Mathematics and Statistics.

Algebraic and Geometric Methods in Discrete Mathematics

Author : Heather A. Harrington,Mohamed Omar,Matthew Wright
Publisher : American Mathematical Soc.
Page : 277 pages
File Size : 41,8 Mb
Release : 2017-03-16
Category : Commutative algebra -- Computational aspects and applications -- Applications of commutative algebra (e.g., to statistics, control theory, optimization, etc.)
ISBN : 9781470423216

Get Book

Algebraic and Geometric Methods in Discrete Mathematics by Heather A. Harrington,Mohamed Omar,Matthew Wright Pdf

This volume contains the proceedings of the AMS Special Session on Algebraic and Geometric Methods in Applied Discrete Mathematics, held on January 11, 2015, in San Antonio, Texas. The papers present connections between techniques from “pure” mathematics and various applications amenable to the analysis of discrete models, encompassing applications of combinatorics, topology, algebra, geometry, optimization, and representation theory. Papers not only present novel results, but also survey the current state of knowledge of important topics in applied discrete mathematics. Particular highlights include: a new computational framework, based on geometric combinatorics, for structure prediction from RNA sequences; a new method for approximating the optimal solution of a sum of squares problem; a survey of recent Helly-type geometric theorems; applications of representation theory to voting theory and game theory; a study of fixed points of tensors; and exponential random graph models from the perspective of algebraic statistics with applications to networks. This volume was written for those trained in areas such as algebra, topology, geometry, and combinatorics who are interested in tackling problems in fields such as biology, the social sciences, data analysis, and optimization. It may be useful not only for experts, but also for students who wish to gain an applied or interdisciplinary perspective.

Geometric Methods in Physics XXXVII

Author : Piotr Kielanowski,Anatol Odzijewicz,Emma Previato
Publisher : Springer Nature
Page : 260 pages
File Size : 47,8 Mb
Release : 2019-11-26
Category : Mathematics
ISBN : 9783030340728

Get Book

Geometric Methods in Physics XXXVII by Piotr Kielanowski,Anatol Odzijewicz,Emma Previato Pdf

The book consists of articles based on the XXXVII Białowieża Workshop on Geometric Methods in Physics, 2018. The series of Białowieża workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. This edition of the workshop featured a special session dedicated to Professor Daniel Sternheimer on the occasion of his 80th birthday. The previously unpublished papers present cutting-edge current research, typically grounded in geometry and analysis, with applications to classical and quantum physics. For the past seven years, the Białowieża Workshops have been complemented by a School on Geometry and Physics comprising a series of advanced lectures for graduate students and early-career researchers. The book also includes abstracts of the five lecture series that were given at the seventh school.

Convex Optimization & Euclidean Distance Geometry

Author : Jon Dattorro
Publisher : Meboo Publishing USA
Page : 776 pages
File Size : 42,7 Mb
Release : 2005
Category : Mathematics
ISBN : 9780976401308

Get Book

Convex Optimization & Euclidean Distance Geometry by Jon Dattorro Pdf

The study of Euclidean distance matrices (EDMs) fundamentally asks what can be known geometrically given onlydistance information between points in Euclidean space. Each point may represent simply locationor, abstractly, any entity expressible as a vector in finite-dimensional Euclidean space.The answer to the question posed is that very much can be known about the points;the mathematics of this combined study of geometry and optimization is rich and deep.Throughout we cite beacons of historical accomplishment.The application of EDMs has already proven invaluable in discerning biological molecular conformation.The emerging practice of localization in wireless sensor networks, the global positioning system (GPS), and distance-based pattern recognitionwill certainly simplify and benefit from this theory.We study the pervasive convex Euclidean bodies and their various representations.In particular, we make convex polyhedra, cones, and dual cones more visceral through illustration, andwe study the geometric relation of polyhedral cones to nonorthogonal bases biorthogonal expansion.We explain conversion between halfspace- and vertex-descriptions of convex cones,we provide formulae for determining dual cones,and we show how classic alternative systems of linear inequalities or linear matrix inequalities and optimality conditions can be explained by generalized inequalities in terms of convex cones and their duals.The conic analogue to linear independence, called conic independence, is introducedas a new tool in the study of classical cone theory; the logical next step in the progression:linear, affine, conic.Any convex optimization problem has geometric interpretation.This is a powerful attraction: the ability to visualize geometry of an optimization problem.We provide tools to make visualization easier.The concept of faces, extreme points, and extreme directions of convex Euclidean bodiesis explained here, crucial to understanding convex optimization.The convex cone of positive semidefinite matrices, in particular, is studied in depth.We mathematically interpret, for example,its inverse image under affine transformation, and we explainhow higher-rank subsets of its boundary united with its interior are convex.The Chapter on "Geometry of convex functions",observes analogies between convex sets and functions:The set of all vector-valued convex functions is a closed convex cone.Included among the examples in this chapter, we show how the real affinefunction relates to convex functions as the hyperplane relates to convex sets.Here, also, pertinent results formultidimensional convex functions are presented that are largely ignored in the literature;tricks and tips for determining their convexityand discerning their geometry, particularly with regard to matrix calculus which remains largely unsystematizedwhen compared with the traditional practice of ordinary calculus.Consequently, we collect some results of matrix differentiation in the appendices.The Euclidean distance matrix (EDM) is studied,its properties and relationship to both positive semidefinite and Gram matrices.We relate the EDM to the four classical axioms of the Euclidean metric;thereby, observing the existence of an infinity of axioms of the Euclidean metric beyondthe triangle inequality. We proceed byderiving the fifth Euclidean axiom and then explain why furthering this endeavoris inefficient because the ensuing criteria (while describing polyhedra)grow linearly in complexity and number.Some geometrical problems solvable via EDMs,EDM problems posed as convex optimization, and methods of solution arepresented;\eg, we generate a recognizable isotonic map of the United States usingonly comparative distance information (no distance information, only distance inequalities).We offer a new proof of the classic Schoenberg criterion, that determines whether a candidate matrix is an EDM. Our proofrelies on fundamental geometry; assuming, any EDM must correspond to a list of points contained in some polyhedron(possibly at its vertices) and vice versa.It is not widely known that the Schoenberg criterion implies nonnegativity of the EDM entries; proved here.We characterize the eigenvalues of an EDM matrix and then devisea polyhedral cone required for determining membership of a candidate matrix(in Cayley-Menger form) to the convex cone of Euclidean distance matrices (EDM cone); \ie,a candidate is an EDM if and only if its eigenspectrum belongs to a spectral cone for EDM^N.We will see spectral cones are not unique.In the chapter "EDM cone", we explain the geometric relationship betweenthe EDM cone, two positive semidefinite cones, and the elliptope.We illustrate geometric requirements, in particular, for projection of a candidate matrixon a positive semidefinite cone that establish its membership to the EDM cone. The faces of the EDM cone are described,but still open is the question whether all its faces are exposed as they are for the positive semidefinite cone.The classic Schoenberg criterion, relating EDM and positive semidefinite cones, isrevealed to be a discretized membership relation (a generalized inequality, a new Farkas''''''''-like lemma)between the EDM cone and its ordinary dual. A matrix criterion for membership to the dual EDM cone is derived thatis simpler than the Schoenberg criterion.We derive a new concise expression for the EDM cone and its dual involvingtwo subspaces and a positive semidefinite cone."Semidefinite programming" is reviewedwith particular attention to optimality conditionsof prototypical primal and dual conic programs,their interplay, and the perturbation method of rank reduction of optimal solutions(extant but not well-known).We show how to solve a ubiquitous platonic combinatorial optimization problem from linear algebra(the optimal Boolean solution x to Ax=b)via semidefinite program relaxation.A three-dimensional polyhedral analogue for the positive semidefinite cone of 3X3 symmetricmatrices is introduced; a tool for visualizing in 6 dimensions.In "EDM proximity"we explore methods of solution to a few fundamental and prevalentEuclidean distance matrix proximity problems; the problem of finding that Euclidean distance matrix closestto a given matrix in the Euclidean sense.We pay particular attention to the problem when compounded with rank minimization.We offer a new geometrical proof of a famous result discovered by Eckart \& Young in 1936 regarding Euclideanprojection of a point on a subset of the positive semidefinite cone comprising all positive semidefinite matriceshaving rank not exceeding a prescribed limit rho.We explain how this problem is transformed to a convex optimization for any rank rho.

Geometric Programming for Communication Systems

Author : Mung Chiang
Publisher : Now Publishers Inc
Page : 172 pages
File Size : 44,9 Mb
Release : 2005
Category : Computers
ISBN : 1933019093

Get Book

Geometric Programming for Communication Systems by Mung Chiang Pdf

Recently Geometric Programming has been applied to study a variety of problems in the analysis and design of communication systems from information theory and queuing theory to signal processing and network protocols. Geometric Programming for Communication Systems begins its comprehensive treatment of the subject by providing an in-depth tutorial on the theory, algorithms, and modeling methods of Geometric Programming. It then gives a systematic survey of the applications of Geometric Programming to the study of communication systems. It collects in one place various published results in this area, which are currently scattered in several books and many research papers, as well as to date unpublished results. Geometric Programming for Communication Systems is intended for researchers and students who wish to have a comprehensive starting point for understanding the theory and applications of geometric programming in communication systems.

Geometry Optimization and Computational Electromagnetics

Author : Raymond A. Wildman
Publisher : ProQuest
Page : 128 pages
File Size : 51,9 Mb
Release : 2008
Category : Electromagnetic devices
ISBN : 0549388877

Get Book

Geometry Optimization and Computational Electromagnetics by Raymond A. Wildman Pdf

A new geometry optimization scheme, based on computational geometry methods, is developed and applied to electromagnetic problems. Geometry optimization is an important problem and has applications in inverse scattering and electromagnetic device design. The basic method uses a novel geometric representation that can represent any topology and is also amenable to stochastic optimization methods. Though only developed here for two-dimensional problems, the method can be extended to three dimensions without altering any of its useful properties. As motivation, a phononic bandgap design problem is first developed and attempted using a pixel filling approach. Though decent results are achieved, the possible solutions are inherently limited by the geometric representation. The new method is then introduced and applied to the inverse scattering of conducting cylinders. Subsequently, homogeneous and inhomogeneous dielectric inverse scattering problems are solved and the efficiency of the method is addressed using local search methods. Finally, several advances in electromagnetic solvers, specifically time domain Nyström methods, are reported. These methods offer advantages over other competing methods and could be used with different geometry design problems.

Optimization Algorithms on Matrix Manifolds

Author : P.-A. Absil,R. Mahony,R. Sepulchre
Publisher : Princeton University Press
Page : 240 pages
File Size : 50,5 Mb
Release : 2009-04-11
Category : Mathematics
ISBN : 1400830249

Get Book

Optimization Algorithms on Matrix Manifolds by P.-A. Absil,R. Mahony,R. Sepulchre Pdf

Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra. Optimization Algorithms on Matrix Manifolds offers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis. It can serve as a graduate-level textbook and will be of interest to applied mathematicians, engineers, and computer scientists.