Machining Simulation Using Solidworks Cam 2019

Machining Simulation Using Solidworks Cam 2019 Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Machining Simulation Using Solidworks Cam 2019 book. This book definitely worth reading, it is an incredibly well-written.

Machining Simulation Using SOLIDWORKS CAM 2019

Author : Kuang-Hua Chang
Publisher : SDC Publications
Page : 288 pages
File Size : 50,9 Mb
Release : 2019-06
Category : Computers
ISBN : 9781630572938

Get Book

Machining Simulation Using SOLIDWORKS CAM 2019 by Kuang-Hua Chang Pdf

This book will teach you all the important concepts and steps used to conduct machining simulations using SOLIDWORKS CAM. SOLIDWORKS CAM is a parametric, feature-based machining simulation software offered as an add-in to SOLIDWORKS. It integrates design and manufacturing in one application, connecting design and manufacturing teams through a common software tool that facilitates product design using 3D solid models. By carrying out machining simulation, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features of part manufacturing can be detected and addressed while the product design is still being finalized. In addition, machining-related problems can be detected and eliminated before mounting a stock on a CNC machine, and manufacturing cost can be estimated using the machining time estimated in the machining simulation. This book is intentionally kept simple. It’s written to help you become familiar with the practical applications of conducting machining simulations in SOLIDWORKS CAM. This book provides you with the basic concepts and steps needed to use the software, as well as a discussion of the G-codes generated. After completing this book, you should have a clear understanding of how to use SOLIDWORKS CAM for machining simulations and should be able to apply this knowledge to carry out machining assignments on your own product designs. In order to provide you with a more comprehensive understanding of machining simulations, the book discusses NC (numerical control) part programming and verification, as well as introduces applications that involve bringing the G-code post processed by SOLIDWORKS CAM to a HAAS CNC mill and lathe to physically cut parts. This book points out important, practical factors when transitioning from virtual to physical machining. Since the machining capabilities offered in the 2019 version of SOLIDWORKS CAM are somewhat limited, this book introduces third-party CAM modules that are seamlessly integrated into SOLIDWORKS, including CAMWorks, HSMWorks, and Mastercam for SOLIDWORKS. This book covers basic concepts, frequently used commands and options required for you to advance from a novice to an intermediate level SOLIDWORKS CAM user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting a machine and cutting tools, defining machining parameters (such as feedrate, spindle speed, depth of cut, and so on), generating and simulating toolpaths, and post processing CL data to output G-code for support of physical machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL data verification by reviewing the G-code generated from the toolpaths. This helps you understand how the G-code is generated by using the respective post processors, which is an important step and an excellent way to confirm that the toolpaths and G-code generated are accurate and useful. Who is this book for? This book should serve well for self-learners. A self-learner should have basic physics and mathematics background, preferably a bachelor or associate degree in science or engineering. We assume that you are familiar with basic manufacturing processes, especially milling and turning. And certainly, we expect that you are familiar with SOLIDWORKS part and assembly modes. A self-learner should be able to complete the fourteen lessons of this book in about fifty hours. This book also serves well for class instruction. Most likely, it will be used as a supplemental reference for courses like CNC Machining, Design and Manufacturing, Computer-Aided Manufacturing, or Computer-Integrated Manufacturing. This book should cover five to six weeks of class instruction, depending on the course arrangement and the technical background of the students.

Machining Simulation Using SOLIDWORKS CAM 2018

Author : Kuang-Hua Chang
Publisher : SDC Publications
Page : 286 pages
File Size : 49,8 Mb
Release : 2024-06-05
Category : Computers
ISBN : 9781630572471

Get Book

Machining Simulation Using SOLIDWORKS CAM 2018 by Kuang-Hua Chang Pdf

This book will teach you all the important concepts and steps used to conduct machining simulations using SOLIDWORKS CAM. SOLIDWORKS CAM is a parametric, feature-based machining simulation software offered as an add-in to SOLIDWORKS. It integrates design and manufacturing in one application, connecting design and manufacturing teams through a common software tool that facilitates product design using 3D solid models. By carrying out machining simulation, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features of part manufacturing can be detected and addressed while the product design is still being finalized. In addition, machining-related problems can be detected and eliminated before mounting a stock on a CNC machine, and manufacturing cost can be estimated using the machining time estimated in the machining simulation. This book is intentionally kept simple. It’s written to help you become familiar with the practical applications of conducting machining simulations in SOLIDWORKS CAM. This book provides you with the basic concepts and steps needed to use the software, as well as a discussion of the G-codes generated. After completing this book, you should have a clear understanding of how to use SOLIDWORKS CAM for machining simulations and should be able to apply this knowledge to carry out machining assignments on your own product designs. In order to provide you with a more comprehensive understanding of machining simulations, the book discusses NC (numerical control) part programming and verification, as well as introduces applications that involve bringing the G-code post processed by SOLIDWORKS CAM to a HAAS CNC mill and lathe to physically cut parts. This book points out important, practical factors when transitioning from virtual to physical machining. Since the machining capabilities offered in the 2018 version of SOLIDWORKS CAM are somewhat limited, this book introduces third-party CAM modules that are seamlessly integrated into SOLIDWORKS, including CAMWorks, HSMWorks, and Mastercam for SOLIDWORKS. This book covers basic concepts, frequently used commands and options required for you to advance from a novice to an intermediate level SOLIDWORKS CAM user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting a machine and cutting tools, defining machining parameters (such as feedrate, spindle speed, depth of cut, and so on), generating and simulating toolpaths, and post processing CL data to output G-code for support of physical machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL data verification by reviewing the G-code generated from the toolpaths. This helps you understand how the G-code is generated by using the respective post processors, which is an important step and an excellent way to confirm that the toolpaths and G-code generated are accurate and useful. Who is this book for? This book should serve well for self-learners. A self-learner should have basic physics and mathematics background, preferably a bachelor or associate degree in science or engineering. We assume that you are familiar with basic manufacturing processes, especially milling and turning. And certainly, we expect that you are familiar with SOLIDWORKS part and assembly modes. A self-learner should be able to complete the fourteen lessons of this book in about fifty hours. This book also serves well for class instruction. Most likely, it will be used as a supplemental reference for courses like CNC Machining, Design and Manufacturing, Computer-Aided Manufacturing, or Computer-Integrated Manufacturing. This book should cover five to six weeks of class instruction, depending on the course arrangement and the technical background of the students.

Machining Simulation Using SOLIDWORKS CAM 2020

Author : Kuang-Hua Chang
Publisher : SDC Publications
Page : 288 pages
File Size : 51,8 Mb
Release : 2024-06-05
Category : Computers
ISBN : 9781630573331

Get Book

Machining Simulation Using SOLIDWORKS CAM 2020 by Kuang-Hua Chang Pdf

This book will teach you all the important concepts and steps used to conduct machining simulations using SOLIDWORKS CAM. SOLIDWORKS CAM is a parametric, feature-based machining simulation software offered as an add-in to SOLIDWORKS. It integrates design and manufacturing in one application, connecting design and manufacturing teams through a common software tool that facilitates product design using 3D solid models. By carrying out machining simulation, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features of part manufacturing can be detected and addressed while the product design is still being finalized. In addition, machining-related problems can be detected and eliminated before mounting a stock on a CNC machine, and manufacturing cost can be estimated using the machining time estimated in the machining simulation. This book is intentionally kept simple. It’s written to help you become familiar with the practical applications of conducting machining simulations in SOLIDWORKS CAM. This book provides you with the basic concepts and steps needed to use the software, as well as a discussion of the G-codes generated. After completing this book, you should have a clear understanding of how to use SOLIDWORKS CAM for machining simulations and should be able to apply this knowledge to carry out machining assignments on your own product designs. In order to provide you with a more comprehensive understanding of machining simulations, the book discusses NC (numerical control) part programming and verification, as well as introduces applications that involve bringing the G-code post processed by SOLIDWORKS CAM to a HAAS CNC mill and lathe to physically cut parts. This book points out important, practical factors when transitioning from virtual to physical machining. Since the machining capabilities offered in the 2020 version of SOLIDWORKS CAM are somewhat limited, this book introduces third-party CAM modules that are seamlessly integrated into SOLIDWORKS, including CAMWorks, HSMWorks, and Mastercam for SOLIDWORKS. This book covers basic concepts, frequently used commands and options required for you to advance from a novice to an intermediate level SOLIDWORKS CAM user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting a machine and cutting tools, defining machining parameters (such as feed rate, spindle speed, depth of cut, and so on), generating and simulating toolpaths, and post processing CL data to output G-code for support of physical machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL data verification by reviewing the G-code generated from the toolpaths. This helps you understand how the G-code is generated by using the respective post processors, which is an important step and an excellent way to confirm that the toolpaths and G-code generated are accurate and useful.

Machining Simulation Using SOLIDWORKS CAM 2021

Author : Kuang-Hua Chang
Publisher : SDC Publications
Page : 290 pages
File Size : 50,6 Mb
Release : 2021-07
Category : Computers
ISBN : 9781630574147

Get Book

Machining Simulation Using SOLIDWORKS CAM 2021 by Kuang-Hua Chang Pdf

• Teaches you how to prevent problems, reduce manufacturing costs, shorten production time, and improve estimating • Covers the core concepts and most frequently used commands in SOLIDWORKS CAM • Designed for users new to SOLIDWORKS CAM with basic knowledge of manufacturing processes • Incorporates cutter location data verification by reviewing the generated G-codes • Includes a chapter on third-party CAM Modules This book will teach you all the important concepts and steps used to conduct machining simulations using SOLIDWORKS CAM. SOLIDWORKS CAM is a parametric, feature-based machining simulation software offered as an add-in to SOLIDWORKS. It integrates design and manufacturing in one application, connecting design and manufacturing teams through a common software tool that facilitates product design using 3D solid models. By carrying out machining simulation, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features of part manufacturing can be detected and addressed while the product design is still being finalized. In addition, machining-related problems can be detected and eliminated before mounting a stock on a CNC machine, and manufacturing cost can be estimated using the machining time estimated in the machining simulation. This book is intentionally kept simple. It’s written to help you become familiar with the practical applications of conducting machining simulations in SOLIDWORKS CAM. This book provides you with the basic concepts and steps needed to use the software, as well as a discussion of the G-codes generated. After completing this book, you should have a clear understanding of how to use SOLIDWORKS CAM for machining simulations and should be able to apply this knowledge to carry out machining assignments on your own product designs. In order to provide you with a more comprehensive understanding of machining simulations, the book discusses NC (numerical control) part programming and verification, as well as introduces applications that involve bringing the G-code post processed by SOLIDWORKS CAM to a HAAS CNC mill and lathe to physically cut parts. This book points out important, practical factors when transitioning from virtual to physical machining. Since the machining capabilities offered in the 2021 version of SOLIDWORKS CAM are somewhat limited, this book introduces third-party CAM modules that are seamlessly integrated into SOLIDWORKS, including CAMWorks, HSMWorks, and Mastercam for SOLIDWORKS. This book covers basic concepts, frequently used commands and options required for you to advance from a novice to an intermediate level SOLIDWORKS CAM user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting a machine and cutting tools, defining machining parameters (such as feed rate, spindle speed, depth of cut, and so on), generating and simulating toolpaths, and post processing CL data to output G-code for support of physical machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL data verification by reviewing the G-code generated from the toolpaths. This helps you understand how the G-code is generated by using the respective post processors, which is an important step and an excellent way to confirm that the toolpaths and G-code generated are accurate and useful. Who is this book for? This book should serve well for self-learners. A self-learner should have basic physics and mathematics background, preferably a bachelor or associate degree in science or engineering. We assume that you are familiar with basic manufacturing processes, especially milling and turning. And certainly, we expect that you are familiar with SOLIDWORKS part and assembly modes. A self-learner should be able to complete the fourteen lessons of this book in about fifty hours. This book also serves well for class instruction. Most likely, it will be used as a supplemental reference for courses like CNC Machining, Design and Manufacturing, Computer-Aided Manufacturing, or Computer-Integrated Manufacturing. This book should cover five to six weeks of class instruction, depending on the course arrangement and the technical background of the students. Table of Contents 1. Introduction to SOLIDWORKS CAM 2. NC Part Programming 3. SOLIDWORKS CAM NC Editor 4. A Quick Run-Through 5. Machining 2.5 Axis Features 6. Machining a Freeform Surface and Limitations 7. Multipart Machining 8. Multiplane Machining 9. Tolerance-Based Machining 10. Turning a Stepped Bar 11. Turning a Stub Shaft 12. Machining a Robotic Forearm Member 13. Turning a Scaled Baseball Bat 14. Third-Party CAM Modules Appendix A: Machinable Features Appendix B: Machining Operations Appendix C: Alphabetical Address Codes Appendix D: Preparatory Functions Appendix E: Machine Functions

Machining Simulation Using SOLIDWORKS CAM 2023

Author : Kuang-Hua Chang
Publisher : SDC Publications
Page : 291 pages
File Size : 55,8 Mb
Release : 2024-06-05
Category : Computers
ISBN : 9781630575700

Get Book

Machining Simulation Using SOLIDWORKS CAM 2023 by Kuang-Hua Chang Pdf

• Teaches you how to prevent problems, reduce manufacturing costs, shorten production time, and improve estimating • Covers the core concepts and most frequently used commands in SOLIDWORKS CAM • Designed for users new to SOLIDWORKS CAM with basic knowledge of manufacturing processes • Incorporates cutter location data verification by reviewing the generated G-codes • Includes a chapter on third-party CAM Modules This book will teach you all the important concepts and steps used to conduct machining simulations using SOLIDWORKS CAM. SOLIDWORKS CAM is a parametric, feature-based machining simulation software offered as an add-in to SOLIDWORKS. It integrates design and manufacturing in one application, connecting design and manufacturing teams through a common software tool that facilitates product design using 3D solid models. By carrying out machining simulation, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features of part manufacturing can be detected and addressed while the product design is still being finalized. In addition, machining-related problems can be detected and eliminated before mounting a stock on a CNC machine, and manufacturing cost can be estimated using the machining time estimated in the machining simulation. This book is intentionally kept simple. It’s written to help you become familiar with the practical applications of conducting machining simulations in SOLIDWORKS CAM. This book provides you with the basic concepts and steps needed to use the software, as well as a discussion of the G-codes generated. After completing this book, you should have a clear understanding of how to use SOLIDWORKS CAM for machining simulations and should be able to apply this knowledge to carry out machining assignments on your own product designs. In order to provide you with a more comprehensive understanding of machining simulations, the book discusses NC (numerical control) part programming and verification, as well as introduces applications that involve bringing the G-code post processed by SOLIDWORKS CAM to a HAAS CNC mill and lathe to physically cut parts. This book points out important, practical factors when transitioning from virtual to physical machining. Since the machining capabilities offered in the 2023 version of SOLIDWORKS CAM are somewhat limited, this book introduces third-party CAM modules that are seamlessly integrated into SOLIDWORKS, including CAMWorks, HSMWorks, and Mastercam for SOLIDWORKS. This book covers basic concepts, frequently used commands and options required for you to advance from a novice to an intermediate level SOLIDWORKS CAM user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting a machine and cutting tools, defining machining parameters (such as feed rate, spindle speed, depth of cut, and so on), generating and simulating toolpaths, and post processing CL data to output G-code for support of physical machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL data verification by reviewing the G-code generated from the toolpaths. This helps you understand how the G-code is generated by using the respective post processors, which is an important step and an excellent way to confirm that the toolpaths and G-code generated are accurate and useful.

Virtual Machining Using CAMWorks 2020

Author : Kuang-Hua Chang
Publisher : SDC Publications
Page : 198 pages
File Size : 48,8 Mb
Release : 2024-06-05
Category : Computers
ISBN : 9781630573225

Get Book

Virtual Machining Using CAMWorks 2020 by Kuang-Hua Chang Pdf

This book is written to help you learn the core concepts and steps used to conduct virtual machining using CAMWorks. CAMWorks is a virtual machining tool designed to increase your productivity and efficiency by simulating machining operations on a computer before creating a physical product. CAMWorks is embedded in SOLIDWORKS as a fully integrated module. CAMWorks provides excellent capabilities for machining simulations in a virtual environment. Capabilities in CAMWorks allow you to select CNC machines and tools, extract or create machinable features, define machining operations, and simulate and visualize machining toolpaths. In addition, the machining time estimated in CAMWorks provides an important piece of information for estimating product manufacturing cost without physically manufacturing the product. The book covers the basic concepts and frequently used commands and options you’ll need to know to advance from a novice to an intermediate level CAMWorks user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting machine and tools, defining machining parameters (such as feed rate), generating and simulating toolpaths, and post processing CL data to output G-codes for support of CNC machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL (cutter location) data verification by reviewing the G-codes generated from the toolpaths. This helps you understand how the G-codes are generated by using the respective post processors, which is an important step and an ultimate way to confirm that the toolpaths and G-codes generated are accurate and useful. This book is intentionally kept simple. It primarily serves the purpose of helping you become familiar with CAMWorks in conducting virtual machining for practical applications. This is not a reference manual of CAMWorks. You may not find everything you need in this book for learning CAMWorks. But this book provides you with basic concepts and steps in using the software, as well as discussions on the G-codes generated. After going over this book, you will develop a clear understanding in using CAMWorks for virtual machining simulations, and should be able to apply the knowledge and skills acquired to carry out machining assignments and bring machining consideration into product design in general. Who this book is for This book should serve well for self-learners. A self-learner should have a basic physics and mathematics background. We assume that you are familiar with basic manufacturing processes, especially milling and turning. In addition, we assume you are familiar with G-codes. A self-learner should be able to complete the ten lessons of this book in about forty hours. This book also serves well for class instructions. Most likely, it will be used as a supplemental reference for courses like CNC Machining, Design and Manufacturing, Computer-Aided Manufacturing, or Computer-Integrated Manufacturing. This book should cover four to five weeks of class instructions, depending on the course arrangement and the technical background of the students. What is virtual machining? Virtual machining is the use of simulation-based technology, in particular, computer-aided manufacturing (CAM) software, to aid engineers in defining, simulating, and visualizing machining operations for parts or assembly in a computer, or virtual, environment. By using virtual machining, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features in the context of part manufacturing, such as deep pockets, holes or fillets of different sizes, or cutting on multiple sides, can be detected and addressed while the product design is still being finalized. In addition, machining-related problems, such as undesirable surface finish, surface gouging, and tool or tool holder colliding with stock or fixtures, can be identified and eliminated before mounting a stock on a CNC machine at shop floor. In addition, manufacturing cost, which constitutes a significant portion of the product cost, can be estimated using the machining time estimated in the virtual machining simulation. Virtual machining allows engineers to conduct machining process planning, generate machining toolpaths, visualize and simulate machining operations, and estimate machining time. Moreover, the toolpaths generated can be converted into NC codes to machine functional parts as well as die or mold for part production. In most cases, the toolpath is generated in a so-called CL data format and then converted to G-codes using respective post processors.

Virtual Machining Using CAMWorks 2019

Author : Kuang-Hua Chang
Publisher : SDC Publications
Page : 196 pages
File Size : 55,8 Mb
Release : 2019-02-04
Category : Computers
ISBN : 9781630572310

Get Book

Virtual Machining Using CAMWorks 2019 by Kuang-Hua Chang Pdf

This book is written to help you learn the core concepts and steps used to conduct virtual machining using CAMWorks. CAMWorks is a virtual machining tool designed to increase your productivity and efficiency by simulating machining operations on a computer before creating a physical product. CAMWorks is embedded in SOLIDWORKS as a fully integrated module. CAMWorks provides excellent capabilities for machining simulations in a virtual environment. Capabilities in CAMWorks allow you to select CNC machines and tools, extract or create machinable features, define machining operations, and simulate and visualize machining toolpaths. In addition, the machining time estimated in CAMWorks provides an important piece of information for estimating product manufacturing cost without physically manufacturing the product. The book covers the basic concepts and frequently used commands and options you’ll need to know to advance from a novice to an intermediate level CAMWorks user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting machine and tools, defining machining parameters (such as feedrate), generating and simulating toolpaths, and post processing CL data to output G-codes for support of CNC machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL (cutter location) data verification by reviewing the G-codes generated from the toolpaths. This helps you understand how the G-codes are generated by using the respective post processors, which is an important step and an ultimate way to confirm that the toolpaths and G-codes generated are accurate and useful. This book is intentionally kept simple. It primarily serves the purpose of helping you become familiar with CAMWorks in conducting virtual machining for practical applications. This is not a reference manual of CAMWorks. You may not find everything you need in this book for learning CAMWorks. But this book provides you with basic concepts and steps in using the software, as well as discussions on the G-codes generated. After going over this book, you will develop a clear understanding in using CAMWorks for virtual machining simulations, and should be able to apply the knowledge and skills acquired to carry out machining assignments and bring machining consideration into product design in general. Who this book is for This book should serve well for self-learners. A self-learner should have a basic physics and mathematics background. We assume that you are familiar with basic manufacturing processes, especially milling and turning. In addition, we assume you are familiar with G-codes. A self-learner should be able to complete the ten lessons of this book in about forty hours. This book also serves well for class instructions. Most likely, it will be used as a supplemental reference for courses like CNC Machining, Design and Manufacturing, Computer-Aided Manufacturing, or Computer-Integrated Manufacturing. This book should cover four to five weeks of class instructions, depending on the course arrangement and the technical background of the students. What is virtual machining? Virtual machining is the use of simulation-based technology, in particular, computer-aided manufacturing (CAM) software, to aid engineers in defining, simulating, and visualizing machining operations for parts or assembly in a computer, or virtual, environment. By using virtual machining, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features in the context of part manufacturing, such as deep pockets, holes or fillets of different sizes, or cutting on multiple sides, can be detected and addressed while the product design is still being finalized. In addition, machining-related problems, such as undesirable surface finish, surface gouging, and tool or tool holder colliding with stock or fixtures, can be identified and eliminated before mounting a stock on a CNC machine at shop floor. In addition, manufacturing cost, which constitutes a significant portion of the product cost, can be estimated using the machining time estimated in the virtual machining simulation. Virtual machining allows engineers to conduct machining process planning, generate machining toolpaths, visualize and simulate machining operations, and estimate machining time. Moreover, the toolpaths generated can be converted into NC codes to machine functional parts as well as die or mold for part production. In most cases, the toolpath is generated in a so-called CL data format and then converted to G-codes using respective post processors.

Virtual Machining Using CAMWorks 2021

Author : Kuang-Hua Chang
Publisher : SDC Publications
Page : 198 pages
File Size : 44,9 Mb
Release : 2021-07
Category : Computers
ISBN : 9781630574062

Get Book

Virtual Machining Using CAMWorks 2021 by Kuang-Hua Chang Pdf

• Teaches you how to prevent problems, reduce manufacturing costs, shorten production time, and improve estimating • Designed for users new to CAMWorks with basic knowledge of manufacturing processes • Covers the core concepts and most frequently used commands in CAMWorks • Incorporates cutter location data verification by reviewing the generated G-codes This book is written to help you learn the core concepts and steps used to conduct virtual machining using CAMWorks. CAMWorks is a virtual machining tool designed to increase your productivity and efficiency by simulating machining operations on a computer before creating a physical product. CAMWorks is embedded in SOLIDWORKS as a fully integrated module. CAMWorks provides excellent capabilities for machining simulations in a virtual environment. Capabilities in CAMWorks allow you to select CNC machines and tools, extract or create machinable features, define machining operations, and simulate and visualize machining toolpaths. In addition, the machining time estimated in CAMWorks provides an important piece of information for estimating product manufacturing cost without physically manufacturing the product. The book covers the basic concepts and frequently used commands and options you’ll need to know to advance from a novice to an intermediate level CAMWorks user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting machine and tools, defining machining parameters (such as feed rate), generating and simulating toolpaths, and post processing CL data to output G-codes for support of CNC machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL (cutter location) data verification by reviewing the G-codes generated from the toolpaths. This helps you understand how the G-codes are generated by using the respective post processors, which is an important step and an ultimate way to confirm that the toolpaths and G-codes generated are accurate and useful. This book is intentionally kept simple. It primarily serves the purpose of helping you become familiar with CAMWorks in conducting virtual machining for practical applications. This is not a reference manual of CAMWorks. You may not find everything you need in this book for learning CAMWorks. But this book provides you with basic concepts and steps in using the software, as well as discussions on the G-codes generated. After going over this book, you will develop a clear understanding in using CAMWorks for virtual machining simulations, and should be able to apply the knowledge and skills acquired to carry out machining assignments and bring machining consideration into product design in general. Who this book is for This book should serve well for self-learners. A self-learner should have a basic physics and mathematics background. We assume that you are familiar with basic manufacturing processes, especially milling and turning. In addition, we assume you are familiar with G-codes. A self-learner should be able to complete the ten lessons of this book in about forty hours. This book also serves well for class instructions. Most likely, it will be used as a supplemental reference for courses like CNC Machining, Design and Manufacturing, Computer-Aided Manufacturing, or Computer-Integrated Manufacturing. This book should cover four to five weeks of class instructions, depending on the course arrangement and the technical background of the students. What is virtual machining? Virtual machining is the use of simulation-based technology, in particular, computer-aided manufacturing (CAM) software, to aid engineers in defining, simulating, and visualizing machining operations for parts or assembly in a computer, or virtual, environment. By using virtual machining, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features in the context of part manufacturing, such as deep pockets, holes or fillets of different sizes, or cutting on multiple sides, can be detected and addressed while the product design is still being finalized. In addition, machining-related problems, such as undesirable surface finish, surface gouging, and tool or tool holder colliding with stock or fixtures, can be identified and eliminated before mounting a stock on a CNC machine at shop floor. In addition, manufacturing cost, which constitutes a significant portion of the product cost, can be estimated using the machining time estimated in the virtual machining simulation. Virtual machining allows engineers to conduct machining process planning, generate machining toolpaths, visualize and simulate machining operations, and estimate machining time. Moreover, the toolpaths generated can be converted into NC codes to machine functional parts as well as die or mold for part production. In most cases, the toolpath is generated in a so-called CL data format and then converted to G-codes using respective post processors. Table of Contents 1. Introduction to CAMWorks 2. A Quick Run-Through 3. Machining 2.5 Axis Features 4. Machining a Freeform Surface 5. Multipart Machining 6. Multiplane Machining 7. Multiaxis Milling and Machine Simulation 8. Turning a Stepped Bar 9. Turning a Stub Shaft 10. Die Machining Application Appendix A: Machinable Features Appendix B: Machining Operations

Virtual Machining Using CAMWorks 2018

Author : Kuang-Hua Chang
Publisher : SDC Publications
Page : 192 pages
File Size : 51,7 Mb
Release : 2018-04
Category : Computers
ISBN : 9781630571511

Get Book

Virtual Machining Using CAMWorks 2018 by Kuang-Hua Chang Pdf

This book is written to help you learn the core concepts and steps used to conduct virtual machining using CAMWorks. CAMWorks is a virtual machining tool designed to increase your productivity and efficiency by simulating machining operations on a computer before creating a physical product. CAMWorks is embedded in SOLIDWORKS as a fully integrated module. CAMWorks provides excellent capabilities for machining simulations in a virtual environment. Capabilities in CAMWorks allow you to select CNC machines and tools, extract or create machinable features, define machining operations, and simulate and visualize machining toolpaths. In addition, the machining time estimated in CAMWorks provides an important piece of information for estimating product manufacturing cost without physically manufacturing the product. The book covers the basic concepts and frequently used commands and options you’ll need to know to advance from a novice to an intermediate level CAMWorks user. Basic concept and commands introduced include extracting machinable features (such as 2.5 axis features), selecting machine and tools, defining machining parameters (such as feedrate), generating and simulating toolpaths, and post processing CL data to output G-codes for support of CNC machining. The concept and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL (cutter location) data verification by reviewing the G-codes generated from the toolpaths. This helps you understand how the G-codes are generated by using the respective post processors, which is an important step and an ultimate way to confirm that the toolpaths and G-codes generated are accurate and useful. This book is intentionally kept simple. It primarily serves the purpose of helping you become familiar with CAMWorks in conducting virtual machining for practical applications. This is not a reference manual of CAMWorks. You may not find everything you need in this book for learning CAMWorks. But this book provides you with basic concepts and steps in using the software, as well as discussions on the G-codes generated. After going over this book, you will develop a clear understanding in using CAMWorks for virtual machining simulations, and should be able to apply the knowledge and skills acquired to carry out machining assignments and bring machining consideration into product design in general. Who this book is for This book should serve well for self-learners. A self-learner should have a basic physics and mathematics background. We assume that you are familiar with basic manufacturing processes, especially milling and turning. In addition, we assume you are familiar with G-codes. A self-learner should be able to complete the ten lessons of this book in about forty hours. This book also serves well for class instructions. Most likely, it will be used as a supplemental reference for courses like CNC Machining, Design and Manufacturing, Computer-Aided Manufacturing, or Computer-Integrated Manufacturing. This book should cover four to five weeks of class instructions, depending on the course arrangement and the technical background of the students. What is virtual machining? Virtual machining is the use of simulation-based technology, in particular, computer-aided manufacturing (CAM) software, to aid engineers in defining, simulating, and visualizing machining operations for parts or assembly in a computer, or virtual, environment. By using virtual machining, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features in the context of part manufacturing, such as deep pockets, holes or fillets of different sizes, or cutting on multiple sides, can be detected and addressed while the product design is still being finalized. In addition, machining-related problems, such as undesirable surface finish, surface gouging, and tool or tool holder colliding with stock or fixtures, can be identified and eliminated before mounting a stock on a CNC machine at shop floor. In addition, manufacturing cost, which constitutes a significant portion of the product cost, can be estimated using the machining time estimated in the virtual machining simulation. Virtual machining allows engineers to conduct machining process planning, generate machining toolpaths, visualize and simulate machining operations, and estimate machining time. Moreover, the toolpaths generated can be converted into NC codes to machine functional parts as well as die or mold for part production. In most cases, the toolpath is generated in a so-called CL data format and then converted to G-codes using respective post processors.

Virtual Machining Using CAMWorks 2023

Author : Kuang-Hua Chang
Publisher : SDC Publications
Page : 201 pages
File Size : 46,8 Mb
Release : 2024-06-05
Category : Computers
ISBN : 9781630575724

Get Book

Virtual Machining Using CAMWorks 2023 by Kuang-Hua Chang Pdf

• Teaches you how to prevent problems, reduce manufacturing costs, shorten production time, and improve estimating • Designed for users new to CAMWorks with basic knowledge of manufacturing processes • Covers the core concepts and most frequently used commands in CAMWorks • Incorporates cutter location data verification by reviewing the generated G-codes This book is written to help you learn the core concepts and steps used to conduct virtual machining using CAMWorks. CAMWorks is a virtual machining tool designed to increase your productivity and efficiency by simulating machining operations on a computer before creating a physical product. CAMWorks is embedded in SOLIDWORKS as a fully integrated module. CAMWorks provides excellent capabilities for machining simulations in a virtual environment. Capabilities in CAMWorks allow you to select CNC machines and tools, extract or create machinable features, define machining operations, and simulate and visualize machining toolpaths. In addition, the machining time estimated in CAMWorks provides an important piece of information for estimating product manufacturing cost without physically manufacturing the product. The book covers the basic concepts and frequently used commands and options you’ll need to know to advance from a novice to an intermediate level CAMWorks user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting machine and tools, defining machining parameters (such as feed rate), generating and simulating toolpaths, and post processing CL data to output G-codes for support of CNC machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL (cutter location) data verification by reviewing the G-codes generated from the toolpaths. This helps you understand how the G-codes are generated by using the respective post processors, which is an important step and an ultimate way to confirm that the toolpaths and G-codes generated are accurate and useful. This book is intentionally kept simple. It primarily serves the purpose of helping you become familiar with CAMWorks in conducting virtual machining for practical applications. This is not a reference manual of CAMWorks. You may not find everything you need in this book for learning CAMWorks. But this book provides you with basic concepts and steps in using the software, as well as discussions on the G-codes generated. After going over this book, you will develop a clear understanding in using CAMWorks for virtual machining simulations, and should be able to apply the knowledge and skills acquired to carry out machining assignments and bring machining consideration into product design in general. Who this book is for This book should serve well for self-learners. A self-learner should have a basic physics and mathematics background. We assume that you are familiar with basic manufacturing processes, especially milling and turning. In addition, we assume you are familiar with G-codes. A self-learner should be able to complete the ten lessons of this book in about forty hours. This book also serves well for class instructions. Most likely, it will be used as a supplemental reference for courses like CNC Machining, Design and Manufacturing, Computer-Aided Manufacturing, or Computer-Integrated Manufacturing. This book should cover four to five weeks of class instructions, depending on the course arrangement and the technical background of the students.

Analysis of Machine Elements Using SOLIDWORKS Simulation 2019

Author : Shahin Nudehi,John Steffen
Publisher : SDC Publications
Page : 544 pages
File Size : 46,5 Mb
Release : 2019-05-23
Category : Computers
ISBN : 9781630572341

Get Book

Analysis of Machine Elements Using SOLIDWORKS Simulation 2019 by Shahin Nudehi,John Steffen Pdf

Analysis of Machine Elements Using SOLIDWORKS Simulation 2019 is written primarily for first-time SOLIDWORKS Simulation 2019 users who wish to understand finite element analysis capabilities applicable to stress analysis of mechanical elements. The focus of examples is on problems commonly found in introductory, undergraduate, Design of Machine Elements or similarly named courses. In order to be compatible with most machine design textbooks, this text begins with problems that can be solved with a basic understanding of mechanics of materials. Problem types quickly migrate to include states of stress found in more specialized situations common to a design of mechanical elements course. Paralleling this progression of problem types, each chapter introduces new software concepts and capabilities. Many examples are accompanied by problem solutions based on use of classical equations for stress determination. Unlike many step-by-step user guides that only list a succession of steps, which if followed correctly lead to successful solution of a problem, this text attempts to provide insight into why each step is performed. This approach amplifies two fundamental tenets of this text. The first is that a better understanding of course topics related to stress determination is realized when classical methods and finite element solutions are considered together. The second tenet is that finite element solutions should always be verified by checking, whether by classical stress equations or experimentation. Each chapter begins with a list of learning objectives related to specific capabilities of the SOLIDWORKS Simulation program introduced in that chapter. Most software capabilities are repeated in subsequent examples so that users gain familiarity with their purpose and are capable of using them in future problems. All end-of-chapter problems are accompanied by evaluation "check sheets" to facilitate grading assignments.

SOLIDWORKS 2019 Tutorial

Author : David Planchard
Publisher : SDC Publications
Page : 640 pages
File Size : 41,8 Mb
Release : 2018-12-21
Category : Computers
ISBN : 9781630572389

Get Book

SOLIDWORKS 2019 Tutorial by David Planchard Pdf

SOLIDWORKS 2019 Tutorial is written to assist students, designers, engineers and professionals who are new to SOLIDWORKS. The text provides a step-by-step, project based learning approach. It also contains information and examples on the five categories in the CSWA exam. The book is divided into four sections. Chapters 1 - 5 explore the SOLIDWORKS User Interface and CommandManager, Document and System properties, simple and complex parts and assemblies, proper design intent, design tables, configurations, multi-sheet, multi-view drawings, BOMs, and Revision tables using basic and advanced features. In chapter 6 you will create the final robot assembly. The physical components and corresponding Science, Technology, Engineering and Math (STEM) curriculum are available from Gears Educational Systems. All assemblies and components for the final robot assembly are provided. Chapters 7 - 10 prepare you for the Certified Associate - Mechanical Design (CSWA) exam. The certification indicates a foundation in and apprentice knowledge of 3D CAD and engineering practices and principles. Chapter 11 covers the benefits of additive manufacturing (3D printing), how it differs from subtractive manufacturing, and its features. You will also learn the terms and technology used in low cost 3D printers. Follow the step-by-step instructions and develop multiple assemblies that combine over 100 extruded machined parts and components. Formulate the skills to create, modify and edit sketches and solid features. Learn the techniques to reuse features, parts and assemblies through symmetry, patterns, copied components, apply proper design intent, design tables and configurations. Learn by doing, not just by reading. Desired outcomes and usage competencies are listed for each chapter. Know your objective up front. Follow the steps in each chapter to achieve your design goals. Work between multiple documents, features, commands, custom properties and document properties that represent how engineers and designers utilize SOLIDWORKS in industry.

SOLIDWORKS 2020 Quick Start

Author : David Planchard
Publisher : SDC Publications
Page : 128 pages
File Size : 42,8 Mb
Release : 2020
Category : Computers
ISBN : 9781630573232

Get Book

SOLIDWORKS 2020 Quick Start by David Planchard Pdf

SOLIDWORKS 2020 Quick Start introduces new users to the basics of using SOLIDWORKS 3D CAD software in five easy lessons. This book is intended for the student or designer who needs to learn SOLIDWORKS quickly and effectively. This book is perfect for engineers in industry who are expected to have SOLIDWORKS skills for their company’s next project or students who need to learn SOLIDWORKS without taking a comprehensive CAD course. Based on years of teaching SOLIDWORKS to engineering students, SOLIDWORKS 2020 Quick Start concentrates on the areas where new users can improve efficiency in the design modeling process. By learning the correct SOLIDWORKS skills and file management techniques, you gain the most knowledge in the shortest period of time. This book begins with an overview of SOLIDWORKS and the User Interface (UI), its menus, toolbars and commands. With a quick pace, you learn the essentials of 2D sketching, part and assembly creation, perform motion study, develop detailed part and assembly drawings and much more. Throughout this book you develop a mini Stirling Engine and investigate the proper design intent and constraints.

Motion Simulation and Mechanism Design with SOLIDWORKS Motion 2016

Author : Kuang-Hua Chang
Publisher : SDC Publications
Page : 152 pages
File Size : 53,5 Mb
Release : 2016-06
Category : Computers
ISBN : 9781630570538

Get Book

Motion Simulation and Mechanism Design with SOLIDWORKS Motion 2016 by Kuang-Hua Chang Pdf

Motion Simulation and Mechanism Design with SOLIDWORKS Motion 2016 is written to help you become familiar with SOLIDWORKS Motion, an add-on module of the SOLIDWORKS software family. This book covers the basic concepts and frequently used commands required to advance readers from a novice to intermediate level in using SOLIDWORKS Motion. SOLIDWORKS Motion allows you to use solid models created in SOLIDWORKS to simulate and visualize mechanism motion and performance. Using SOLIDWORKS Motion early in the product development stage could prevent costly redesign due to design defects found in the physical testing phase. Therefore, using SOLIDWORKS Motion contributes to a more cost effective, reliable, and efficient product design process. Basic concepts discussed in this book include model generation, such as creating assembly mates for proper motion; carrying out simulation and animation; and visualizing simulation results, such as graphs and spreadsheet data. These concepts are introduced using simple, yet realistic examples. Verifying the results obtained from the computer simulation is extremely important. One of the unique features of this book is the incorporation of theoretical discussions for kinematic and dynamic analyses in conjunction with the simulation results obtained using SOLIDWORKS Motion. Verifying the simulation results will increase your confidence in using the software and prevent you from being fooled by erroneous simulations.

SOLIDWORKS 2019 Reference Guide

Author : David Planchard
Publisher : SDC Publications
Page : 1040 pages
File Size : 53,6 Mb
Release : 2018-11-12
Category : Computers
ISBN : 9781630572266

Get Book

SOLIDWORKS 2019 Reference Guide by David Planchard Pdf

The SOLIDWORKS 2019 Reference Guide is a comprehensive reference book written to assist the beginner to intermediate user of SOLIDWORKS 2019. SOLIDWORKS is an immense software package, and no one book can cover all topics for all users. This book provides a centralized reference location to address many of the tools, features and techniques of SOLIDWORKS 2019. This book covers the following: • System and Document properties • FeatureManagers • PropertyManagers • ConfigurationManagers • RenderManagers • 2D and 3D Sketch tools • Sketch entities • 3D Feature tools • Motion Study • Sheet Metal • Motion Study • SOLIDWORKS Simulation • PhotoView 360 • Pack and Go • 3D PDFs • Intelligent Modeling techniques • 3D printing terminology and more Chapter 1 provides a basic overview of the concepts and terminology used throughout this book using SOLIDWORKS 2019 software. If you are completely new to SOLIDWORKS, you should read Chapter 1 in detail and complete Lesson 1, Lesson 2 and Lesson 3 in the SOLIDWORKS Tutorials. If you are familiar with an earlier release of SOLIDWORKS, you still might want to skim Chapter 1 to become acquainted with some of the commands, menus and features that you have not used; or you can simply jump to any section in any chapter. Each chapter provides detailed PropertyManager information on key topics with individual stand-alone short tutorials to reinforce and demonstrate the functionality and ease of the SOLIDWORKS tool or feature. The book provides access to over 260 models, their solutions and additional support materials. Learn by doing, not just by reading. Formulate the skills to create, modify and edit sketches and solid features. Learn the techniques to reuse features, parts and assemblies through symmetry, patterns, copied components, design tables, configurations and more. The book is designed to complement the Online Tutorials and Online Help contained in SOLIDWORKS 2019. The goal is to illustrate how multiple design situations and systematic steps combine to produce successful designs. The author developed the tutorials by combining his own industry experience with the knowledge of engineers, department managers, professors, vendors and manufacturers. He is directly involved with SOLIDWORKS every day and his responsibilities go far beyond the creation of just a 3D model.