Mathematical Models And Computer Simulations For Biomedical Applications

Mathematical Models And Computer Simulations For Biomedical Applications Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Mathematical Models And Computer Simulations For Biomedical Applications book. This book definitely worth reading, it is an incredibly well-written.

Mathematical Models and Computer Simulations for Biomedical Applications

Author : Gabriella Bretti,Roberto Natalini,Pasquale Palumbo,Luigi Preziosi
Publisher : Springer Nature
Page : 261 pages
File Size : 55,6 Mb
Release : 2023-09-17
Category : Mathematics
ISBN : 9783031357152

Get Book

Mathematical Models and Computer Simulations for Biomedical Applications by Gabriella Bretti,Roberto Natalini,Pasquale Palumbo,Luigi Preziosi Pdf

Mathematical modelling and computer simulations are playing a crucial role in the solution of the complex problems arising in the field of biomedical sciences and provide a support to clinical and experimental practices in an interdisciplinary framework. Indeed, the development of mathematical models and efficient numerical simulation tools is of key importance when dealing with such applications. Moreover, since the parameters in biomedical models have peculiar scientific interpretations and their values are often unknown, accurate estimation techniques need to be developed for parameter identification against the measured data of observed phenomena. In the light of the new challenges brought by the biomedical applications, computational mathematics paves the way for the validation of the mathematical models and the investigation of control problems. The volume hosts high-quality selected contributions containing original research results as well as comprehensive papers and survey articles including prospective discussion focusing on some topical biomedical problems. It is addressed, but not limited to: research institutes, academia, and pharmaceutical industries.

Introduction to Mathematical Modeling and Computer Simulations

Author : Vladimir Mityushev,Wojciech Nawalaniec,Natalia Rylko
Publisher : CRC Press
Page : 241 pages
File Size : 53,6 Mb
Release : 2018-02-19
Category : Mathematics
ISBN : 9781351998765

Get Book

Introduction to Mathematical Modeling and Computer Simulations by Vladimir Mityushev,Wojciech Nawalaniec,Natalia Rylko Pdf

Can be considered an interdisciplinary introduction to applied mathematics and to computer simulations. Some familiarity with calculus and algebra is assumed. Presents a systematic and self-contained presentation of the foundations of Mathematical Modeling. Discusses various ‘tricks' that can be used in Computer Simulations. Provides an exhaustive and clear explanation of how to develop and apply mathematical models, as well as corresponding codes for symbolic and numerical computations.

Modeling and Simulation in the Medical and Health Sciences

Author : John A. Sokolowski,Catherine M. Banks
Publisher : Wiley
Page : 228 pages
File Size : 47,5 Mb
Release : 2011-06-07
Category : Mathematics
ISBN : 0470769475

Get Book

Modeling and Simulation in the Medical and Health Sciences by John A. Sokolowski,Catherine M. Banks Pdf

This edited book is divided into three parts: Fundamentals of Medical and Health Sciences Modeling and Simulation introduces modeling and simulation in the medical and health sciences; Medical and Health Sciences Models provides the theoretical underpinnings of medical and health sciences modeling; and Modeling and Simulation Applications in Medical and Health Sciences focuses on teaching, training, and research applications. The book begins with a general discussion of modeling and simulation from the modeling and simulation discipline perspective. This discussion grounds the reader in common terminology. It also relates this terminology to concepts found in the medical and health care (MHC) area to help bridge the gap between developers and MHC practitioners. Three distinct modes of modeling and simulation are described: live, constructive, and virtual. The live approach explains the concept of using real (live) people employing real equipment for training purposes. The constructive mode is a means of engaging medical modeling and simulation. In constructive simulation, simulated people and simulated equipment are developed to augment real-world conditions for training or experimentation purposes. The virtual mode is perhaps the most fascinating as virtual operating rooms and synthetic training environments are being produced for practitioners and educators at break-neck speed. In this mode, real people are employing simulated equipment to improve physical skills and decision-making ability.

Introduction to Computational Cardiology

Author : Boris Ja. Kogan
Publisher : Springer Science & Business Media
Page : 236 pages
File Size : 50,6 Mb
Release : 2009-12-09
Category : Computers
ISBN : 9780387766867

Get Book

Introduction to Computational Cardiology by Boris Ja. Kogan Pdf

Introduction to Computational Cardiology provides a comprehensive, in-depth treatment of the fundamental concepts and research challenges involved in the mathematical modeling and computer simulation of dynamical processes in the heart, under normal and pathological conditions. About this textbook: - Presents descriptions of models used in both biology and medicine for discovering the mechanisms of heart function and dysfunction on several physiological scales across different species. - Provides several examples throughout the textbook and exercises at the end which facilitate understanding of basic concepts and introduces, for implementation, treated problems to parallel supercomputers. Introduction to Computational Cardiology serves as a secondary textbook or reference book for advanced-level students in computer science, electrical engineering, biomedical engineering, and cardiac electrophysiology. It is also suitable for researchers employing mathematical modeling and computer simulations of biomedical problems.

Biomedical Applications of Computer Modeling

Author : Arthur Christopoulos
Publisher : CRC Press
Page : 264 pages
File Size : 55,5 Mb
Release : 2000-09-19
Category : Science
ISBN : 9781420041873

Get Book

Biomedical Applications of Computer Modeling by Arthur Christopoulos Pdf

Up to the last decade or so, most general modeling approaches to the study of molecular components of biological responses have required significant amount of computer time, expertise, and resources, as well as highly specialized and often custom-written programs. With Biomedical Applications of Computer Modeling you don't have to be a computer scientist to learn valuable modeling techniques. The book represents the first single-volume book that describes general approaches to computer modeling as they apply to the biomedical professions, particularly in the realms of pharmacology and biochemistry. Bringing together contributions from researchers with hands-on expertise, the book is loaded with examples, and it also encompasses different types of computer modeling approaches. In fact, the text supports each modeling approach with clinical examples. It thereby provides a convenient source of readily applicable modeling information. In addition, the book offers easy-to-follow information and presents it in a how-to manner that minimizes the use of mathematical jargon. Biomedical Applications of Computer Modeling includes chapters on equilibrium modeling, dynamic/kinetic modeling, and stochastic modeling, as well as overviews of the application of models to experimental data. With the ubiquitous presence of desktops and notebook computers in biomedical environments, Biomedical Applications of Computer Modeling provides you with an unprecedented means for readily addressing data analysis or computer modeling problems.

Biomathematics

Author : J. C. Misra
Publisher : World Scientific
Page : 525 pages
File Size : 52,6 Mb
Release : 2006
Category : Science
ISBN : 9789812774859

Get Book

Biomathematics by J. C. Misra Pdf

This book on modelling and simulation in biomathematics will be invaluable to researchers who are interested in the emerging areas of the field. Graduate students in related areas as well as lecturers will also find it beneficial. Some of the chapters have been written by distinguished experts in the field. Sample Chapter(s). Chapter 1: Detecting Mosaic Structures in DNA Sequence Alignments (1,349 KB). Contents: Detecting Mosaic Structures in DNA Sequence Alignments (D Husmeier); Application of Statistical Methodology and Model Design to Socio-Behaviour of HIV Transmission (J Oluwoye); A Stochastic Model Incorporating HIV Treatments for a Heterosexual Population: Impact on Threshold Conditions (R J Gallop et al.); Modeling and Identification of the Dynamics of the MF-Influenced Free-Radical Transformations in Lipid-Modeling Substances and Lipids (J Bentsman et al.); Computer Simulation of Self-Reorganization in Biological Cells (D Greenspan); Modelling Biological Gel Contraction by Cells: Consequences of Cell Traction Forces Distribution and Initial Stress (S Ramtani); Peristaltic Transport of Physiological Fluids (J C Misra & S K Pandey); Mathematical Modelling of DNA Knots and Links (J C Misra & S Mukherjee); Using Monodomain Computer Models for the Simulation of Electric Fields During Excitation Spread in Cardiac Tissue (G Plank); Flow in Tubes with Complicated Geometries with Special Application to Blood Flow in Large Arteries (G Jayaraman); Mathematical Modeling in Reproductive Biomedicine (S Sharma & S K Guha); Image Theory and Applications in Bioelectromagnetics (P D Einziger et al.); Dynamics of Humanoid Robots: Geometrical and Topological Duality (V G Ivancevic); The Effects of Body Composition on Energy Expenditure and Weight Dynamics During Hypophagia: A Setpoint Analysis (F P Kozusko); Mathematical Models in Population Dynamics and Ecology (R Diluo); Modelling in Bone Biomechanics (J C Misra & S Samanta). Readership: Graduate students, academic and researchers in biomathematics, mathematical biology, mathematical modeling, biotechnology, biocomputing, biophysics, bioengineering and mechanics."

Biomedical Modeling and Simulation on a PC

Author : Rogier P.van Wijk van Brievingh,Dietmar P.F. Möller,Xun Shen
Publisher : Springer Science & Business Media
Page : 533 pages
File Size : 53,5 Mb
Release : 2013-03-12
Category : Science
ISBN : 9781461391630

Get Book

Biomedical Modeling and Simulation on a PC by Rogier P.van Wijk van Brievingh,Dietmar P.F. Möller,Xun Shen Pdf

I have long had an interest in the life sciences, but have had few opportunities to indulge that interest in my professional activities. It has only been through simulation that those opportunities have arisen. Some of my most enjoyable classes were those I taught to students in the life sciences, where I attempted to show them the value of simulation to their discipline. That there is such a value cannot be questioned. Whether you are interested in population ecology, phar macokinetics, the cardiovascular system, or cell interaction, simulation can play a vital role in explaining the underlying processes and in enhancing our understanding of these processes. This book comprises an excellent collection of contributions, and clearly demonstrates the value of simulation in the particular areas of physiology and bioengineering. My main frustration when teaching these classes to people with little or no computer background was the lack of suitable simulation software. This di rectly inspired my own attempts at producing software usable by the computer novice. It is especially nice that software is available that enables readers to experience the examples in this book for themselves. I would like to congratulate and thank the editors, Rogier P. van Wijk van Brievingh and Dietmar P. P. Moller, for all of their excellent efforts. They should be proud of their achievement. This is the sixth volume in the Advances in Simulation series, and other volumes are in preparation.

Computational Modeling in Biomedical Engineering and Medical Physics

Author : Alexandru Morega,Mihaela Morega,Alin Dobre
Publisher : Academic Press
Page : 320 pages
File Size : 52,6 Mb
Release : 2020-10-02
Category : Science
ISBN : 9780128178973

Get Book

Computational Modeling in Biomedical Engineering and Medical Physics by Alexandru Morega,Mihaela Morega,Alin Dobre Pdf

Mathematical and numerical modelling of engineering problems in medicine is aimed at unveiling and understanding multidisciplinary interactions and processes and providing insights useful to clinical care and technology advances for better medical equipment and systems. When modelling medical problems, the engineer is confronted with multidisciplinary problems of electromagnetism, heat and mass transfer, and structural mechanics with, possibly, different time and space scales, which may raise concerns in formulating consistent, solvable mathematical models. Computational Medical Engineering presents a number of engineering for medicine problems that may be encountered in medical physics, procedures, diagnosis and monitoring techniques, including electrical activity of the heart, hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods. The authors discuss the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling (e.g., criteria for well-posed problems); physics scaling (homogenization techniques); Constructal Law criteria in morphing shape and structure of systems with internal flows; computational domain construction (CAD and, or reconstruction techniques based on medical images); numerical modelling issues, and validation techniques used to ascertain numerical simulation results. In addition, new ideas and venues to investigate and understand finer scale models and merge them into continuous media medical physics are provided as case studies. Presents the fundamentals of mathematical and numerical modeling of engineering problems in medicine Discusses many of the most common modelling scenarios for Biomedical Engineering, including, electrical activity of the heart hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods Includes discussion of the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling, physics scaling, Constructal Law criteria in morphing shape and structure of systems with internal flows, computational domain construction, numerical modelling issues, and validation techniques used to ascertain numerical simulation results

Dynamical Systems, PDEs and Networks for Biomedical Applications: Mathematical Modeling, Analysis and Simulations

Author : André H. Erhardt,Krasimira Tsaneva-Atanasova,Glenn Terje Lines,Erik Andreas Martens
Publisher : Frontiers Media SA
Page : 209 pages
File Size : 50,9 Mb
Release : 2023-02-15
Category : Science
ISBN : 9782832514580

Get Book

Dynamical Systems, PDEs and Networks for Biomedical Applications: Mathematical Modeling, Analysis and Simulations by André H. Erhardt,Krasimira Tsaneva-Atanasova,Glenn Terje Lines,Erik Andreas Martens Pdf

Mathematical Modeling of Biological Systems, Volume II

Author : Andreas Deutsch,Rafael Bravo de la Parra,Rob J. de Boer,Odo Diekmann,Peter Jagers,Eva Kisdi,Mirjam Kretzschmar,Petr Lansky,Hans Metz
Publisher : Springer Science & Business Media
Page : 386 pages
File Size : 49,7 Mb
Release : 2007-10-12
Category : Mathematics
ISBN : 9780817645564

Get Book

Mathematical Modeling of Biological Systems, Volume II by Andreas Deutsch,Rafael Bravo de la Parra,Rob J. de Boer,Odo Diekmann,Peter Jagers,Eva Kisdi,Mirjam Kretzschmar,Petr Lansky,Hans Metz Pdf

Volume II of this two-volume, interdisciplinary work is a unified presentation of a broad range of state-of-the-art topics in the rapidly growing field of mathematical modeling in the biological sciences. Highlighted throughout are mathematical and computational apporaches to examine central problems in the life sciences, ranging from the organization principles of individual cells to the dynamics of large populations. The chapters are thematically organized into the following main areas: epidemiology, evolution and ecology, immunology, neural systems and the brain, and innovative mathematical methods and education. The work will be an excellent reference text for a broad audience of researchers, practitioners, and advanced students in this rapidly growing field at the intersection of applied mathematics, experimental biology and medicine, computational biology, biochemistry, computer science, and physics.

Modeling and Simulation in Biomedical Engineering: Applications in Cardiorespiratory Physiology

Author : Willem van Meurs
Publisher : McGraw Hill Professional
Page : 224 pages
File Size : 44,7 Mb
Release : 2011-08-07
Category : Technology & Engineering
ISBN : 9780071714464

Get Book

Modeling and Simulation in Biomedical Engineering: Applications in Cardiorespiratory Physiology by Willem van Meurs Pdf

THEORY AND PRACTICE OF MODELING AND SIMULATING HUMAN PHYSIOLOGY Written by a coinventor of the Human Patient Simulator (HPS) and past president of the Society in Europe for Simulation Applied to Medicine (SESAM), Modeling and Simulation in Biomedical Engineering: Applications in Cardiorespiratory Physiology is a compact and consistent introduction to this expanding field. The book divides the modeling and simulation process into five manageable steps--requirements, conceptual models, mathematical models, software implementation, and simulation results and validation. A framework and a basic set of deterministic, continuous-time models for the cardiorespiratory system are provided. This timely resource also addresses advanced topics, including sensitivity analysis and setting model requirements as part of an encompassing simulation and simulator design. Practical examples provide you with the skills to evaluate and adapt existing physiologic models or create new ones for specific applications. Coverage includes: Signals and systems Model requirements Conceptual models Mathematical models Software implementation Simulation results and model validation Cardiorespiratory system model Circulation Respiration Physiologic control Sensitivity analysis of a cardiovascular model Design of model-driven acute care training simulators “Uniquely qualified to author such a text, van Meurs is one of the original developers of CAE Healthcare’s Human Patient Simulator (HPS). ...His understanding of mathematics, human physiology, pharmacology, control systems, and systems engineering, combined with a conversational writing style, results in a readable text. ...The ample illustrations and tables also break up the text and make reading the book easier on the eyes. ...concise yet in conversational style, with real-life examples. This book is highly recommended for coursework in physiologic modeling and for all who are interested in simulator design and development. The book pulls all these topics together under one cover and is an important contribution to biomedical literature.” --IEEE Pulse, January 2014 “This book is written by a professional engineer who is unique in that he seems to have a natural understanding of 3 key areas as follows: the hardware involved with simulators, human physiology, and mathematical modeling. Willem van Meurs is one of the inventors of the model-driven human patient simulator (HPS), and so, he is very qualified to write this book. The book is written in a clear way, using the first person throughout, in a conversational manner, with a style that involves posing questions and answering them in subsequent text. ...The book starts with a very useful introduction and background chapter, setting out the scene for the rest of the book. ...I have used his book in enhancing my own talks and understanding human patient simulation and can strongly recommend it.” --Simulation in Healthcare December, 2012 Reviewed by Mark A. Tooley, Ph.D., Department of Medical Physics and Bioengineering, Royal United Hospital, Combe Park, Bath, UK.

Mathematical Modeling and Simulation in Enteric Neurobiology

Author : Roustem Miftahof
Publisher : World Scientific
Page : 350 pages
File Size : 44,5 Mb
Release : 2009
Category : Medical
ISBN : 9789812834812

Get Book

Mathematical Modeling and Simulation in Enteric Neurobiology by Roustem Miftahof Pdf

The lack of scientists equally trained and prepared to understand both mathematics and biology/medicine hampers the development and application of computer simulation methods in biology and neurogastrobiology. Currently, there are no texts for navigating the extensive and intricate field of mathematical and computational modeling in neurogastrobiology. This book bridges the gap between mathematicians, computer scientists and biologists, and thus assists in the study and analysis of complex biological phenomena that cannot be done through traditional in vivo and in vitro experimental approaches. The book recognizes the complexity of biological phenomena under investigation and treats the subject matter with a degree of mathematical rigor. Special attention is given to computer simulations for interpolation and extrapolation of electromechanical and chemoelectrical phenomena, nonlinear self-sustained electromechanical wave activity, pharmacological effects including co-localization and co-transmission by multiple neurotransmitters, receptor polymodality, and drug interactions. Mathematical Modeling and Simulation in Enteric Neurobiology is an interdisciplinary book and is an essential source of information for biologists and doctors who are interested in knowing about the role and advantages of numerical experimentation in their subjects, as well as for mathematicians who are interested in exploring new areas of applications.

Mathematical Modeling of Biological Systems, Volume I

Author : Andreas Deutsch,Lutz Brusch,Helen Byrne,Gerda de Vries,Hanspeter Herzel
Publisher : Springer Science & Business Media
Page : 382 pages
File Size : 43,7 Mb
Release : 2007-06-15
Category : Mathematics
ISBN : 9780817645588

Get Book

Mathematical Modeling of Biological Systems, Volume I by Andreas Deutsch,Lutz Brusch,Helen Byrne,Gerda de Vries,Hanspeter Herzel Pdf

Volume I of this two-volume, interdisciplinary work is a unified presentation of a broad range of state-of-the-art topics in the rapidly growing field of mathematical modeling in the biological sciences. The chapters are thematically organized into the following main areas: cellular biophysics, regulatory networks, developmental biology, biomedical applications, data analysis and model validation. The work will be an excellent reference text for a broad audience of researchers, practitioners, and advanced students in this rapidly growing field at the intersection of applied mathematics, experimental biology and medicine, computational biology, biochemistry, computer science, and physics.

Advanced Simulation in Biomedicine

Author : Dietmar P.F. Möller
Publisher : Springer Science & Business Media
Page : 206 pages
File Size : 51,5 Mb
Release : 2012-12-06
Category : Computers
ISBN : 9781441986146

Get Book

Advanced Simulation in Biomedicine by Dietmar P.F. Möller Pdf

This book presents a collection of invited contributions, each reflecting an area of biomedicine in which simulation techniques have been successfully applied. Thus, it provides a state-of-the-art survey of simulation techniques in a variety of biomedical applications. Chapter one presents the conceptual framework for advanced simulations such as parallel processing in biological systems. Chapter two focuses on structured biological modeling based on the bond graph method. This is followed by an up-to-date account of advanced simulation of a variety of sophisticated biomedical processes. The authors provide many insights into how computer simulation techniques and tools can be applied to research problems in biomedicine. The idea for this book arose out of the daily work by experts in their field and reflects developing areas. Therefore, I think the material is timely and hope that the work described will be an encouragement for others. It is the objective of this book to present advanced simulation techniques in biomedicine and outline current research, as well as to point out open problems, in this dynamic field. Finally, I wish to express my thanks to those colleagues who have made this book possible with their contributions.