Metallic Films For Electronic Optical And Magnetic Applications

Metallic Films For Electronic Optical And Magnetic Applications Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Metallic Films For Electronic Optical And Magnetic Applications book. This book definitely worth reading, it is an incredibly well-written.

Metallic Films for Electronic, Optical and Magnetic Applications

Author : Katayun Barmak,Kevin Coffey
Publisher : Woodhead Publishing
Page : 671 pages
File Size : 52,9 Mb
Release : 2014-02-13
Category : Technology & Engineering
ISBN : 9780857096296

Get Book

Metallic Films for Electronic, Optical and Magnetic Applications by Katayun Barmak,Kevin Coffey Pdf

Metallic films play an important role in modern technologies such as integrated circuits, information storage, displays, sensors, and coatings. Metallic Films for Electronic, Optical and Magnetic Applications reviews the structure, processing and properties of metallic films. Part one explores the structure of metallic films using characterization methods such as x-ray diffraction and transmission electron microscopy. This part also encompasses the processing of metallic films, including structure formation during deposition and post-deposition reactions and phase transformations. Chapters in part two focus on the properties of metallic films, including mechanical, electrical, magnetic, optical, and thermal properties. Metallic Films for Electronic, Optical and Magnetic Applications is a technical resource for electronics components manufacturers, scientists, and engineers working in the semiconductor industry, product developers of sensors, displays, and other optoelectronic devices, and academics working in the field. Explores the structure of metallic films using characterization methods such as x-ray diffraction and transmission electron microscopy Discusses processing of metallic films, including structure formation during deposition and post-deposition reactions and phase transformations Focuses on the properties of metallic films, including mechanical, electrical, magnetic, optical, and thermal properties

Magnetic Nano- and Microwires

Author : Manuel Vázquez
Publisher : Woodhead Publishing
Page : 847 pages
File Size : 47,8 Mb
Release : 2015-05-27
Category : Technology & Engineering
ISBN : 9780081001813

Get Book

Magnetic Nano- and Microwires by Manuel Vázquez Pdf

Magnetic nanowires and microwires are key tools in the development ofenhanced devices for information technology (memory and data processing) andsensing. Offering the combined characteristics of high density, high speed, andnon-volatility, they facilitate reliable control of the motion of magnetic domainwalls; a key requirement for the development of novel classes of logic and storagedevices. Part One introduces the design and synthesis of magnetic nanowires andmicrowires, reviewing the growth and processing of nanowires and nanowireheterostructures using such methods as sol-gel and electrodepositioncombinations, focused-electron/ion-beam-induced deposition, chemicalvapour transport, quenching and drawing and magnetic interactions. Magneticand transport properties, alongside domain walls, in nano- and microwiresare then explored in Part Two, before Part Three goes on to explore a widerange of applications for magnetic nano- and microwire devices, includingmemory, microwave and electrochemical applications, in addition to thermalspin polarization and configuration, magnetocalorific effects and Bloch pointdynamics. Detailed coverage of multiple key techniques for the growth and processing of nanowires and microwires Reviews the principles and difficulties involved in applying magnetic nano- and microwires to a wide range of applications Combines the expertise of specialists from around the globe to give a broad overview of current and future trends

Rare Earth and Transition Metal Doping of Semiconductor Materials

Author : Volkmar Dierolf,Ian Ferguson,John M Zavada
Publisher : Woodhead Publishing
Page : 470 pages
File Size : 50,6 Mb
Release : 2016-01-23
Category : Science
ISBN : 9780081000601

Get Book

Rare Earth and Transition Metal Doping of Semiconductor Materials by Volkmar Dierolf,Ian Ferguson,John M Zavada Pdf

Rare Earth and Transition Metal Doping of Semiconductor Material explores traditional semiconductor devices that are based on control of the electron’s electric charge. This book looks at the semiconductor materials used for spintronics applications, in particular focusing on wide band-gap semiconductors doped with transition metals and rare earths. These materials are of particular commercial interest because their spin can be controlled at room temperature, a clear opposition to the most previous research on Gallium Arsenide, which allowed for control of spins at supercold temperatures. Part One of the book explains the theory of magnetism in semiconductors, while Part Two covers the growth of semiconductors for spintronics. Finally, Part Three looks at the characterization and properties of semiconductors for spintronics, with Part Four exploring the devices and the future direction of spintronics. Examines materials which are of commercial interest for producing smaller, faster, and more power-efficient computers and other devices Analyzes the theory behind magnetism in semiconductors and the growth of semiconductors for spintronics Details the properties of semiconductors for spintronics

Thin Films on Silicon

Author : Vijay Narayanan,Martin M Frank,Alexander A Demkov
Publisher : World Scientific
Page : 552 pages
File Size : 50,9 Mb
Release : 2016-08-15
Category : Technology & Engineering
ISBN : 9789814740494

Get Book

Thin Films on Silicon by Vijay Narayanan,Martin M Frank,Alexander A Demkov Pdf

This volume provides a broad overview of the fundamental materials science of thin films that use silicon as an active substrate or passive template, with an emphasis on opportunities and challenges for practical applications in electronics and photonics. It covers three materials classes on silicon: Semiconductors such as undoped and doped Si and SiGe, SiC, GaN, and III-V arsenides and phosphides; dielectrics including silicon nitride and high-k, low-k, and electro-optically active oxides; and metals, in particular silicide alloys. The impact of film growth and integration on physical, electrical, and optical properties, and ultimately device performance, is highlighted.

Epitaxial Growth of Complex Metal Oxides

Author : Gertjan Koster,M Huijben,Guus Rijnders
Publisher : Elsevier
Page : 504 pages
File Size : 44,8 Mb
Release : 2015-05-14
Category : Technology & Engineering
ISBN : 9781782422556

Get Book

Epitaxial Growth of Complex Metal Oxides by Gertjan Koster,M Huijben,Guus Rijnders Pdf

The atomic arrangement and subsequent properties of a material are determined by the type and conditions of growth leading to epitaxy, making control of these conditions key to the fabrication of higher quality materials. Epitaxial Growth of Complex Metal Oxides reviews the techniques involved in such processes and highlights recent developments in fabrication quality which are facilitating advances in applications for electronic, magnetic and optical purposes. Part One reviews the key techniques involved in the epitaxial growth of complex metal oxides, including growth studies using reflection high-energy electron diffraction, pulsed laser deposition, hybrid molecular beam epitaxy, sputtering processes and chemical solution deposition techniques for the growth of oxide thin films. Part Two goes on to explore the effects of strain and stoichiometry on crystal structure and related properties, in thin film oxides. Finally, the book concludes by discussing selected examples of important applications of complex metal oxide thin films in Part Three. Provides valuable information on the improvements in epitaxial growth processes that have resulted in higher quality films of complex metal oxides and further advances in applications for electronic and optical purposes Examines the techniques used in epitaxial thin film growth Describes the epitaxial growth and functional properties of complex metal oxides and explores the effects of strain and defects

Thin metal films on weakly-interacting substrates

Author : Andreas Jamnig
Publisher : Linköping University Electronic Press
Page : 108 pages
File Size : 51,6 Mb
Release : 2020-09-30
Category : Electronic
ISBN : 9789179298203

Get Book

Thin metal films on weakly-interacting substrates by Andreas Jamnig Pdf

Vapor-based growth of thin metal films with controlled morphology on weakly-interacting substrates (WIS), including oxides and van der Waals materials, is essential for the fabrication of multifunctional metal contacts in a wide array of optoelectronic devices. Achieving this entails a great challenge, since weak film/substrate interactions yield a pronounced and uncontrolled 3D morphology. Moreover, the far-from-equilibrium nature of vapor-based film growth often leads to generation of mechanical stress, which may further compromise device reliability and functionality. The objectives of this thesis are related to metal film growth on WIS and seek to: (i) contribute to the understanding of atomic-scale processes that control film morphological evolution; (ii) elucidate the dynamic competition between nanoscale processes that govern film stress generation and evolution; and (iii) develop methodologies for manipulating and controlling nanoscale film morphology between 2D and 3D. Investigations focus on magnetron sputter-deposited Ag and Cu films on SiO2 and amorphous carbon (a-C) substrates. Research is conducted by strategically combining of in situ and real-time film growth monitoring, ex situ chemical and (micro)-structural analysis, optical modelling, and deterministic growth simulations. In the first part, the scaling behavior of characteristic morphological transition thicknesses (i.e., percolation and continuous film formation thickness) during growth of Ag and Cu films on a-C are established as function of deposition rate and temperature. These data are interpreted using a theoretical framework based on the droplet growth theory and the kinetic freezing model for island coalescence, from which the diffusion rates of film forming species during Ag and Cu growth are estimated. By combining experimental data with ab initio molecular dynamics simulations, diffusion of multiatomic clusters, rather than monomers, is identified as the rate-limiting structure-forming process. In the second part, the effect of minority metallic or gaseous species (Cu, N2, O2) on Ag film morphological evolution on SiO2 is studied. By employing in situ spectroscopic ellipsometry, it is found that addition of minority species at the film growth front promotes 2D morphology, but also yields an increased continuous-layer resistivity. Ex situ analyses show that 2D morphology is favored because minority species hinder the rate of coalescence completion. Hence, a novel growth manipulation strategy is compiled in which minority species are deployed with high temporal precision to selectively target specific film growth stages and achieve 2D morphology, while retaining opto-electronic properties of pure Ag films. In the third part, the evolution of stress during Ag and Cu film growth on a-C and its dependence on growth kinetics (as determined by deposition rate, substrate temperature) is systematically investigated. A general trend toward smaller compressive stress magnitudes with increasing temperature/deposition rate is found, related to increasing grain size/decreasing adatom diffusion length. Exception to this trend is found for Cu films, in which oxygen incorporation from the residual growth atmosphere at low deposition rates inhibits adatom diffusivity and decreases the magnitude of compressive stress. The effect of N2 on stress type and magnitude in Ag films is also studied. While Ag grown in N2-free atmosphere exhibits a typical compressive-tensile-compressive stress evolution as function of thickness, addition of a few percent of N2 yields to a stress turnaround from compressive to tensile stress after film continuity which is attributed to giant grain growth and film roughening. The overall results of the thesis provide the foundation to: (i) determine diffusion rates over a wide range of WIS film/substrates systems; (ii) design non-invasive strategies for multifunctional contacts in optoelectronic devices; (iii) complete important missing pieces in the fundamental understanding of stress, which can be used to expand theoretical descriptions for predicting and tuning stress magnitude. La morphologie de films minces métalliques polycristallins élaborés par condensation d’une phase vapeur sur des substrats à faible interaction (SFI) possède un caractère 3D intrinsèque. De plus, la nature hors équilibre de la croissance du film depuis une phase vapeur conduit souvent à la génération de contraintes mécaniques, ce qui peut compromettre davantage la fiabilité et la fonctionnalité des dispositifs optoélectroniques. Les objectifs de cette thèse sont liés à la croissance de films métalliques sur SFI et visent à: (i) contribuer à une meilleure compréhension des processus à l'échelle atomique qui contrôlent l'évolution morphologique des films; (ii) élucider les processus dynamiques qui régissent la génération et l'évolution des contraintes en cours de croissance; et (iii) développer des méthodologies pour manipuler et contrôler la morphologie des films à l'échelle nanométrique. L’originalité de l’approche mise en œuvre consiste à suivre la croissance des films in situ et en temps réel par couplage de plusieurs diagnostics, complété par des analyses microstructurales ex situ. Les grandeurs mesurées sont confrontées à des modèles optiques et des simulations atomistiques. La première partie est consacrée à une étude de comportement d’échelonnement des épaisseurs de transition morphologiques caractéristiques, à savoir la percolation et la continuité du film, lors de la croissance de films polycristallins d'Ag et de Cu sur carbone amorphe (a-C). Ces grandeurs sont examinées de façon systématique en fonction de la vitesse de dépôt et de la température du substrat, et interprétées dans le cadre de la théorie de la croissance de gouttelettes suivant un modèle cinétique décrivant la coalescence d’îlots, à partir duquel les coefficients de diffusion des espèces métalliques sont estimés. En confrontant les données expérimentales à des simulations par dynamique moléculaire ab initio, la diffusion de clusters multiatomiques est identifiée comme l’étape limitante le processus de croissance. Dans la seconde partie, l’incorporation, et l’impact sur la morphologie, d’espèces métalliques ou gazeuses minoritaires (Cu, N2, O2) lors de la croissance de film Ag sur SiO2 est étudié. A partir de mesures ellipsométriques in situ, on constate que l'addition d'espèces minoritaires favorise une morphologie 2D, entravant le taux d'achèvement de la coalescence, mais donne également une résistivité accrue de la couche continue. Par conséquent, une stratégie de manipulation de la croissance est proposée dans laquelle des espèces minoritaires sont déployées avec une grande précision temporelle pour cibler sélectivement des stades de croissance de film spécifiques et obtenir une morphologie 2D, tout en conservant les propriétés optoélectroniques des films d’Ag pur. Dans la troisième partie, l'évolution des contraintes résiduelles lors de la croissance des films d'Ag et de Cu sur a-C et leur dépendance à la cinétique de croissance est systématiquement étudiée. On observe une tendance générale vers des amplitudes de contrainte de compression plus faibles avec une augmentation de la température/vitesse de dépôt, liée à l'augmentation de la taille des grains/à la diminution de la longueur de diffusion des adatomes. Également, l’ajout dans le plasma de N2 sur le type et l'amplitude des contraintes dans les films d'Ag est étudié. L'ajout de quelques pourcents de N2 en phase gaz donne lieu à un renversement de la contrainte de compression et une évolution en tension au-delà de la continuité du film. Cet effet est attribué à une croissance anormale des grains géants et le développement de rugosité de surface. L’ensemble des résultats obtenus dans cette thèse fournissent les bases pour: (i) déterminer les coefficients de diffusion sur une large gamme de systèmes films/SFI; (ii) concevoir des stratégies non invasives pour les contacts multifonctionnels dans les dispositifs optoélectroniques; (iii) apporter des éléments de compréhension à l’origine du développement de contrainte, qui permettent de prédire et contrôler le niveau de contrainte intrinsèque à la croissance de films minces polycristallins.

Modeling, Characterization and Production of Nanomaterials

Author : V Tewary,Y Zhang
Publisher : Elsevier
Page : 554 pages
File Size : 55,9 Mb
Release : 2015-03-17
Category : Technology & Engineering
ISBN : 9781782422358

Get Book

Modeling, Characterization and Production of Nanomaterials by V Tewary,Y Zhang Pdf

Nano-scale materials have unique electronic, optical, and chemical properties which make them attractive for a new generation of devices. Part one of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics and Energy Applications covers modeling techniques incorporating quantum mechanical effects to simulate nanomaterials and devices, such as multiscale modeling and density functional theory. Part two describes the characterization of nanomaterials using diffraction techniques and Raman spectroscopy. Part three looks at the structure and properties of nanomaterials, including their optical properties and atomic behaviour. Part four explores nanofabrication and nanodevices, including the growth of graphene, GaN-based nanorod heterostructures and colloidal quantum dots for applications in nanophotonics and metallic nanoparticles for catalysis applications. Comprehensive coverage of the close connection between modeling and experimental methods for studying a wide range of nanomaterials and nanostructures Focus on practical applications and industry needs, supported by a solid outlining of theoretical background Draws on the expertise of leading researchers in the field of nanomaterials from around the world

Handbook of Flexible Organic Electronics

Author : Stergios Logothetidis
Publisher : Elsevier
Page : 483 pages
File Size : 55,6 Mb
Release : 2014-12-03
Category : Technology & Engineering
ISBN : 9781782420439

Get Book

Handbook of Flexible Organic Electronics by Stergios Logothetidis Pdf

Organic flexible electronics represent a highly promising technology that will provide increased functionality and the potential to meet future challenges of scalability, flexibility, low power consumption, light weight, and reduced cost. They will find new applications because they can be used with curved surfaces and incorporated in to a number of products that could not support traditional electronics. The book covers device physics, processing and manufacturing technologies, circuits and packaging, metrology and diagnostic tools, architectures, and systems engineering. Part one covers the production, properties and characterisation of flexible organic materials and part two looks at applications for flexible organic devices. Reviews the properties and production of various flexible organic materials. Describes the integration technologies of flexible organic electronics and their manufacturing methods. Looks at the application of flexible organic materials in smart integrated systems and circuits, chemical sensors, microfluidic devices, organic non-volatile memory devices, and printed batteries and other power storage devices.

Directed Self-assembly of Block Co-polymers for Nano-manufacturing

Author : Roel Gronheid,Paul Nealey
Publisher : Woodhead Publishing
Page : 328 pages
File Size : 49,5 Mb
Release : 2015-07-17
Category : Technology & Engineering
ISBN : 9780081002612

Get Book

Directed Self-assembly of Block Co-polymers for Nano-manufacturing by Roel Gronheid,Paul Nealey Pdf

The directed self-assembly (DSA) method of patterning for microelectronics uses polymer phase-separation to generate features of less than 20nm, with the positions of self-assembling materials externally guided into the desired pattern. Directed self-assembly of Block Co-polymers for Nano-manufacturing reviews the design, production, applications and future developments needed to facilitate the widescale adoption of this promising technology. Beginning with a solid overview of the physics and chemistry of block copolymer (BCP) materials, Part 1 covers the synthesis of new materials and new processing methods for DSA. Part 2 then goes on to outline the key modelling and characterization principles of DSA, reviewing templates and patterning using topographical and chemically modified surfaces, line edge roughness and dimensional control, x-ray scattering for characterization, and nanoscale driven assembly. Finally, Part 3 discusses application areas and related issues for DSA in nano-manufacturing, including for basic logic circuit design, the inverse DSA problem, design decomposition and the modelling and analysis of large scale, template self-assembly manufacturing techniques. Authoritative outlining of theoretical principles and modeling techniques to give a thorough introdution to the topic Discusses a broad range of practical applications for directed self-assembly in nano-manufacturing Highlights the importance of this technology to both the present and future of nano-manufacturing by exploring its potential use in a range of fields

Ecological Design of Smart Home Networks

Author : N. Saito,D Menga
Publisher : Elsevier
Page : 130 pages
File Size : 45,7 Mb
Release : 2015-03-31
Category : Technology & Engineering
ISBN : 9781782421245

Get Book

Ecological Design of Smart Home Networks by N. Saito,D Menga Pdf

This book provides an authoritative guide for postgraduate students and academic researchers in electronics, computer and network engineering, telecommunications, energy technology and home automation, as well as R&D managers in industrial sectors such as wireless technology, consumer electronics, telecommunications and networking, information technology, energy technology and home automation. Part One outlines the key principles and technologies needed for ecological smart home networks. Beginning with a thorough overview of the concept behind ecological smart home network design, the book reviews such important areas as power line communications, hybrid systems and middleware platforms. Part Two then goes on to discuss some important applications of this technology, with wireless smart sensor networks for home and telecare, and smart home networking for content and energy management (including the intelligent Zero Emission Urban System), all explored in detail. More systematic and comprehensive coverage: the book covers ecological design and technology requirements, performance and applications for smart home networks Better focus on industry needs: the book covers current and emerging smart home networking technologies. It explains how the technologies work, how they have developed, their capabilities and the markets that they target Better coverage of the best international research: the book is multi-contributor and brings together the leading researchers from around the world

Optical Thin Films and Coatings

Author : Angela Piegari,François Flory
Publisher : Woodhead Publishing
Page : 860 pages
File Size : 45,6 Mb
Release : 2018-06-19
Category : Technology & Engineering
ISBN : 9780081020999

Get Book

Optical Thin Films and Coatings by Angela Piegari,François Flory Pdf

Optical Thin Films and Coatings: From Materials to Applications, Second Edition, provides an overview of thin film materials and their properties, design and manufacture across a wide variety of application areas. Sections explore their design and manufacture and their unconventional features, including the scattering properties of random structures in thin films, optical properties at short wavelengths, thermal properties and color effects. Other chapters focus on novel materials, including organic optical coatings, surface multiplasmonics, optical thin films containing quantum dots, and optical coatings, including laser components, solar cells, displays and lighting, and architectural and automotive glass. The book presents a technical resource for researchers and engineers working with optical thin films and coatings. It is also ideal for professionals in the security, automotive, space and other industries who need an understanding of the topic. Provides thorough review of applications of optical coatings including laser components, solar cells, glazing, displays and lighting One-stop reference that addresses deposition techniques, properties, and applications of optical thin films and coatings Novel methods, suggestions for analysis, and applications makes this a valuable resource for experts in the field as well

Laser Surface Engineering

Author : Jonathan R. Lawrence,David Waugh
Publisher : Elsevier
Page : 719 pages
File Size : 53,9 Mb
Release : 2014-10-02
Category : Technology & Engineering
ISBN : 9781782420798

Get Book

Laser Surface Engineering by Jonathan R. Lawrence,David Waugh Pdf

Lasers can alter the surface composition and properties of materials in a highly controllable way, which makes them efficient and cost-effective tools for surface engineering. This book provides an overview of the different techniques, the laser-material interactions and the advantages and disadvantages for different applications. Part one looks at laser heat treatment, part two covers laser additive manufacturing such as laser-enhanced electroplating, and part three discusses laser micromachining, structuring and surface modification. Chemical and biological applications of laser surface engineering are explored in part four, including ways to improve the surface corrosion properties of metals. Provides an overview of thermal surface treatments using lasers, including the treatment of steels, light metal alloys, polycrystalline silicon and technical ceramics Addresses the development of new metallic materials, innovations in laser cladding and direct metal deposition, and the fabrication of tuneable micro- and nano-scale surface structures Chapters also cover laser structuring, surface modification, and the chemical and biological applications of laser surface engineering

Power Ultrasonics

Author : Juan A Gallego-Juárez,Karl F Graff
Publisher : Elsevier
Page : 1166 pages
File Size : 42,7 Mb
Release : 2014-11-14
Category : Science
ISBN : 9781782420361

Get Book

Power Ultrasonics by Juan A Gallego-Juárez,Karl F Graff Pdf

The industrial interest in ultrasonic processing has revived during recent years because ultrasonic technology may represent a flexible “green alternative for more energy efficient processes. A challenge in the application of high-intensity ultrasound to industrial processing is the design and development of specific power ultrasonic systems for large scale operation. In the area of ultrasonic processing in fluid and multiphase media the development of a new family of power generators with extensive radiating surfaces has significantly contributed to the implementation at industrial scale of several applications in sectors such as the food industry, environment, and manufacturing. Part one covers fundamentals of nonlinear propagation of ultrasonic waves in fluids and solids. It also discusses the materials and designs of power ultrasonic transducers and devices. Part two looks at applications of high power ultrasound in materials engineering and mechanical engineering, food processing technology, environmental monitoring and remediation and industrial and chemical processing (including pharmaceuticals), medicine and biotechnology. Covers the fundamentals of nonlinear propagation of ultrasonic waves in fluids and solids. Discusses the materials and designs of power ultrasonic transducers and devices. Considers state-of-the-art power sonic applications across a wide range of industries.

Advances in Delay-tolerant Networks (DTNs)

Author : J Rodrigues
Publisher : Elsevier
Page : 298 pages
File Size : 41,8 Mb
Release : 2014-11-20
Category : Computers
ISBN : 9780857098467

Get Book

Advances in Delay-tolerant Networks (DTNs) by J Rodrigues Pdf

Part one looks at delay-tolerant network architectures and platforms including DTN for satellite communications and deep-space communications, underwater networks, networks in developing countries, vehicular networks and emergency communications. Part two covers delay-tolerant network routing, including issues such as congestion control, naming, addressing and interoperability. Part three explores services and applications in delay-tolerant networks, such as web browsing, social networking and data streaming. Part four discusses enhancing the performance, reliability, privacy and security of delay-tolerant networks. Chapters cover resource sharing, simulation and modeling and testbeds. Reviews the different types of DTN and shows how they can be applied in satellite and deep-space communications, vehicular and underwater communications, and during large-scale disasters Considers the potential for rapid selection and dissemination of urgent messages is considered Reviews the breadth of areas in which DTN is already providing solutions and the prospects for its wider adoption

Polymer Optical Fibres

Author : Christian-Alexander Bunge,Markus Beckers,Thomas Gries
Publisher : Woodhead Publishing
Page : 436 pages
File Size : 40,8 Mb
Release : 2016-08-25
Category : Technology & Engineering
ISBN : 9780081000564

Get Book

Polymer Optical Fibres by Christian-Alexander Bunge,Markus Beckers,Thomas Gries Pdf

Polymer Optical Fibres: Fibre Types, Materials, Fabrication, Characterization, and Applications explores polymer optical fibers, specifically their materials, fabrication, characterization, measurement techniques, and applications. Optical effects, including light propagation, degrading effects of attenuation, scattering, and dispersion, are explained. Other important parameters like mechanical strength, operating temperatures, and processability are also described. Polymer optical fibers (POF) have a number of advantages over glass fibers, such as low cost, flexibility, low weight, electromagnetic immunity, good bandwidth, simple installation, and mechanical stability. Provides systematic and comprehensive coverage of materials, fabrication, properties, measurement techniques, and applications of POF Focuses on industry needs in communication, illumination and sensors, the automotive industry, and medical and biotechnology Features input from leading experts in POF technology, with experience spanning optoelectronics, polymer, and textiles Explains optical effects, including light propagation, degrading effects of attenuation, scattering, and dispersion