Milling Simulation

Milling Simulation Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Milling Simulation book. This book definitely worth reading, it is an incredibly well-written.

Milling Simulation

Author : Weihong Zhang,Min Wan
Publisher : John Wiley & Sons
Page : 277 pages
File Size : 52,8 Mb
Release : 2016-06-13
Category : Mathematics
ISBN : 9781786300157

Get Book

Milling Simulation by Weihong Zhang,Min Wan Pdf

Reliable scheduling in cutting conditions is very important in machining processes, and this requires thorough understanding of the physical behaviors of the machining process, which cannot be achieved without understanding the underlying mechanism of the processes. The book describes the mechanics and dynamics together with the clamping principles in milling processes, and can be used as a guideline for graduate students and research engineers who wish to be effective manufacture engineers and researchers. Many books have focused on common principles, which are suitable for general machining processes, e.g., milling, turning and drilling, etc. This book specifically aims at exploring the mechanics and dynamics of milling processes. Original theoretical derivations and new observations on static cutting force models, dynamic stability models and clamping principles associated with milling processes are classified and detailed. The book is indented as a text for graduate students and machining engineers who wish to intensively learn milling mechanism and machine tool vibration.

Simulation and Tool Path Optimization for the Hexapod Milling Machine

Author : Shangjian Du
Publisher : Vulkan-Verlag GmbH
Page : 148 pages
File Size : 42,9 Mb
Release : 2005
Category : Technology & Engineering
ISBN : 3802787269

Get Book

Simulation and Tool Path Optimization for the Hexapod Milling Machine by Shangjian Du Pdf

To fully exploit the advantages of multi-axis machining in a modern production environment, new types of parallel kinematic machines (PKM) and new processing technologies such as those using high speed cutting (HSC) are needed. However, the machining accuracy and hence the process reliability of PKM are still not satisfactory when using today's CAM systems due to the complexity of the dynamic behavior of machine axes. A hybrid simulation method for optimizing tool paths that overcomes the limits of today's CAM systems is presented in this work. Two major independent simulations were performed, to examine the influences on the quality of the final product. It is shown that the kinematics, the dynamics and the stiffness are important factors affecting the accuracy of PKM. These factors can be taken into account, to obtain an accurate modeling of PKM-behavior.

Milling Simulation

Author : Weihong Zhang,Min Wan
Publisher : John Wiley & Sons
Page : 272 pages
File Size : 41,9 Mb
Release : 2016-06-15
Category : Mathematics
ISBN : 9781119262916

Get Book

Milling Simulation by Weihong Zhang,Min Wan Pdf

Reliable scheduling in cutting conditions is very important in machining processes, and this requires thorough understanding of the physical behaviors of the machining process, which cannot be achieved without understanding the underlying mechanism of the processes. The book describes the mechanics and dynamics together with the clamping principles in milling processes, and can be used as a guideline for graduate students and research engineers who wish to be effective manufacture engineers and researchers. Many books have focused on common principles, which are suitable for general machining processes, e.g., milling, turning and drilling, etc. This book specifically aims at exploring the mechanics and dynamics of milling processes. Original theoretical derivations and new observations on static cutting force models, dynamic stability models and clamping principles associated with milling processes are classified and detailed. The book is indented as a text for graduate students and machining engineers who wish to intensively learn milling mechanism and machine tool vibration.

Virtual Machining Using CAMWorks 2019

Author : Kuang-Hua Chang
Publisher : SDC Publications
Page : 196 pages
File Size : 41,8 Mb
Release : 2019-02-04
Category : Computers
ISBN : 9781630572310

Get Book

Virtual Machining Using CAMWorks 2019 by Kuang-Hua Chang Pdf

This book is written to help you learn the core concepts and steps used to conduct virtual machining using CAMWorks. CAMWorks is a virtual machining tool designed to increase your productivity and efficiency by simulating machining operations on a computer before creating a physical product. CAMWorks is embedded in SOLIDWORKS as a fully integrated module. CAMWorks provides excellent capabilities for machining simulations in a virtual environment. Capabilities in CAMWorks allow you to select CNC machines and tools, extract or create machinable features, define machining operations, and simulate and visualize machining toolpaths. In addition, the machining time estimated in CAMWorks provides an important piece of information for estimating product manufacturing cost without physically manufacturing the product. The book covers the basic concepts and frequently used commands and options you’ll need to know to advance from a novice to an intermediate level CAMWorks user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting machine and tools, defining machining parameters (such as feedrate), generating and simulating toolpaths, and post processing CL data to output G-codes for support of CNC machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL (cutter location) data verification by reviewing the G-codes generated from the toolpaths. This helps you understand how the G-codes are generated by using the respective post processors, which is an important step and an ultimate way to confirm that the toolpaths and G-codes generated are accurate and useful. This book is intentionally kept simple. It primarily serves the purpose of helping you become familiar with CAMWorks in conducting virtual machining for practical applications. This is not a reference manual of CAMWorks. You may not find everything you need in this book for learning CAMWorks. But this book provides you with basic concepts and steps in using the software, as well as discussions on the G-codes generated. After going over this book, you will develop a clear understanding in using CAMWorks for virtual machining simulations, and should be able to apply the knowledge and skills acquired to carry out machining assignments and bring machining consideration into product design in general. Who this book is for This book should serve well for self-learners. A self-learner should have a basic physics and mathematics background. We assume that you are familiar with basic manufacturing processes, especially milling and turning. In addition, we assume you are familiar with G-codes. A self-learner should be able to complete the ten lessons of this book in about forty hours. This book also serves well for class instructions. Most likely, it will be used as a supplemental reference for courses like CNC Machining, Design and Manufacturing, Computer-Aided Manufacturing, or Computer-Integrated Manufacturing. This book should cover four to five weeks of class instructions, depending on the course arrangement and the technical background of the students. What is virtual machining? Virtual machining is the use of simulation-based technology, in particular, computer-aided manufacturing (CAM) software, to aid engineers in defining, simulating, and visualizing machining operations for parts or assembly in a computer, or virtual, environment. By using virtual machining, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features in the context of part manufacturing, such as deep pockets, holes or fillets of different sizes, or cutting on multiple sides, can be detected and addressed while the product design is still being finalized. In addition, machining-related problems, such as undesirable surface finish, surface gouging, and tool or tool holder colliding with stock or fixtures, can be identified and eliminated before mounting a stock on a CNC machine at shop floor. In addition, manufacturing cost, which constitutes a significant portion of the product cost, can be estimated using the machining time estimated in the virtual machining simulation. Virtual machining allows engineers to conduct machining process planning, generate machining toolpaths, visualize and simulate machining operations, and estimate machining time. Moreover, the toolpaths generated can be converted into NC codes to machine functional parts as well as die or mold for part production. In most cases, the toolpath is generated in a so-called CL data format and then converted to G-codes using respective post processors.

Virtual Machining Using CAMWorks 2018

Author : Kuang-Hua Chang
Publisher : SDC Publications
Page : 192 pages
File Size : 55,7 Mb
Release : 2018-04
Category : Computers
ISBN : 9781630571511

Get Book

Virtual Machining Using CAMWorks 2018 by Kuang-Hua Chang Pdf

This book is written to help you learn the core concepts and steps used to conduct virtual machining using CAMWorks. CAMWorks is a virtual machining tool designed to increase your productivity and efficiency by simulating machining operations on a computer before creating a physical product. CAMWorks is embedded in SOLIDWORKS as a fully integrated module. CAMWorks provides excellent capabilities for machining simulations in a virtual environment. Capabilities in CAMWorks allow you to select CNC machines and tools, extract or create machinable features, define machining operations, and simulate and visualize machining toolpaths. In addition, the machining time estimated in CAMWorks provides an important piece of information for estimating product manufacturing cost without physically manufacturing the product. The book covers the basic concepts and frequently used commands and options you’ll need to know to advance from a novice to an intermediate level CAMWorks user. Basic concept and commands introduced include extracting machinable features (such as 2.5 axis features), selecting machine and tools, defining machining parameters (such as feedrate), generating and simulating toolpaths, and post processing CL data to output G-codes for support of CNC machining. The concept and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL (cutter location) data verification by reviewing the G-codes generated from the toolpaths. This helps you understand how the G-codes are generated by using the respective post processors, which is an important step and an ultimate way to confirm that the toolpaths and G-codes generated are accurate and useful. This book is intentionally kept simple. It primarily serves the purpose of helping you become familiar with CAMWorks in conducting virtual machining for practical applications. This is not a reference manual of CAMWorks. You may not find everything you need in this book for learning CAMWorks. But this book provides you with basic concepts and steps in using the software, as well as discussions on the G-codes generated. After going over this book, you will develop a clear understanding in using CAMWorks for virtual machining simulations, and should be able to apply the knowledge and skills acquired to carry out machining assignments and bring machining consideration into product design in general. Who this book is for This book should serve well for self-learners. A self-learner should have a basic physics and mathematics background. We assume that you are familiar with basic manufacturing processes, especially milling and turning. In addition, we assume you are familiar with G-codes. A self-learner should be able to complete the ten lessons of this book in about forty hours. This book also serves well for class instructions. Most likely, it will be used as a supplemental reference for courses like CNC Machining, Design and Manufacturing, Computer-Aided Manufacturing, or Computer-Integrated Manufacturing. This book should cover four to five weeks of class instructions, depending on the course arrangement and the technical background of the students. What is virtual machining? Virtual machining is the use of simulation-based technology, in particular, computer-aided manufacturing (CAM) software, to aid engineers in defining, simulating, and visualizing machining operations for parts or assembly in a computer, or virtual, environment. By using virtual machining, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features in the context of part manufacturing, such as deep pockets, holes or fillets of different sizes, or cutting on multiple sides, can be detected and addressed while the product design is still being finalized. In addition, machining-related problems, such as undesirable surface finish, surface gouging, and tool or tool holder colliding with stock or fixtures, can be identified and eliminated before mounting a stock on a CNC machine at shop floor. In addition, manufacturing cost, which constitutes a significant portion of the product cost, can be estimated using the machining time estimated in the virtual machining simulation. Virtual machining allows engineers to conduct machining process planning, generate machining toolpaths, visualize and simulate machining operations, and estimate machining time. Moreover, the toolpaths generated can be converted into NC codes to machine functional parts as well as die or mold for part production. In most cases, the toolpath is generated in a so-called CL data format and then converted to G-codes using respective post processors.

High-Speed Machining

Author : Kapil Gupta,Paulo Davim
Publisher : Academic Press
Page : 318 pages
File Size : 46,5 Mb
Release : 2020-01-31
Category : Technology & Engineering
ISBN : 9780128150214

Get Book

High-Speed Machining by Kapil Gupta,Paulo Davim Pdf

High-Speed Machining covers every aspect of this important subject, from the basic mechanisms of the technology, right through to possible avenues for future research. This book will help readers choose the best method for their particular task, how to set up their equipment to reduce chatter and wear, and how to use simulation tools to model high-speed machining processes. The different applications of each technology are discussed throughout, as are the latest findings by leading researchers in this field. For any researcher looking to understand this topic, any manufacturer looking to improve performance, or any manager looking to upgrade their plant, this is the most comprehensive and authoritative guide available. Summarizes important R&D from around the world, focusing on emerging topics like intelligent machining Explains the latest best practice for the optimization of high-speed machining processes for greater energy efficiency and machining precision Provides practical advice on the testing and monitoring of HSM machines, drawing on practices from leading companies

Machining Dynamics

Author : Tony L. Schmitz,K. Scott Smith
Publisher : Springer
Page : 382 pages
File Size : 47,8 Mb
Release : 2018-10-30
Category : Technology & Engineering
ISBN : 9783319937076

Get Book

Machining Dynamics by Tony L. Schmitz,K. Scott Smith Pdf

This book trains engineers and students in the practical application of machining dynamics, with a particular focus on milling. The book walks readers through the steps required to improve machining productivity through chatter avoidance and reduced surface location error, and covers in detail topics such as modal analysis (including experimental methods) to obtain the tool point frequency response function, descriptions of turning and milling, force modeling, time domain simulation, stability lobe diagram algorithms, surface location error calculation for milling, beam theory, and more. This new edition includes updates throughout the entire text, new exercises and examples, and a new chapter on machining tribology. It is a valuable resource for practicing manufacturing engineers and graduate students interested in learning how to improve machining productivity through consideration of the process dynamics.

Handbook of Research on Manufacturing Process Modeling and Optimization Strategies

Author : Das, Raja,Pradhan, Mohan
Publisher : IGI Global
Page : 530 pages
File Size : 40,5 Mb
Release : 2017-03-10
Category : Business & Economics
ISBN : 9781522524410

Get Book

Handbook of Research on Manufacturing Process Modeling and Optimization Strategies by Das, Raja,Pradhan, Mohan Pdf

Recent improvements in business process strategies have allowed more opportunities to attain greater developmental performances. This has led to higher success in day-to-day production and overall competitive advantage. The Handbook of Research on Manufacturing Process Modeling and Optimization Strategies is a pivotal reference source for the latest research on the various manufacturing methodologies and highlights the best optimization approaches to achieve boosted process performance. Featuring extensive coverage on relevant areas such as genetic algorithms, fuzzy set theory, and soft computing techniques, this publication is an ideal resource for researchers, practitioners, academicians, designers, manufacturing engineers, and institutions involved in design and manufacturing projects.

Intelligent Robotics and Applications

Author : Sabina Jeschke,Honghai Liu,Daniel Schilberg
Publisher : Springer
Page : 665 pages
File Size : 51,9 Mb
Release : 2011-12-03
Category : Computers
ISBN : 9783642254864

Get Book

Intelligent Robotics and Applications by Sabina Jeschke,Honghai Liu,Daniel Schilberg Pdf

The two volume set LNAI 7101 and LNAI 7102 constitutes the refereed proceedings of the 4th International Conference on Intelligent Robotics and Applications, ICIRA 2011, held in Aachen, Germany, in November 2011. The 122 revised full papers presented were thoroughly reviewed and selected from numerous submissions. They are organized in topical sections on progress in indoor UAV, robotics intelligence, industrial robots, rehabilitation robotics, mechanisms and their applications, multi robot systems, robot mechanism and design, parallel kinematics, parallel kinematics machines and parallel robotics, handling and manipulation, tangibility in human-machine interaction, navigation and localization of mobile robot, a body for the brain: embodied intelligence in bio-inspired robotics, intelligent visual systems, self-optimising production systems, computational intelligence, robot control systems, human-robot interaction, manipulators and applications, stability, dynamics and interpolation, evolutionary robotics, bio-inspired robotics, and image-processing applications.

Discrete Event Simulations

Author : Eldin Wee Chuan Lim
Publisher : BoD – Books on Demand
Page : 212 pages
File Size : 40,9 Mb
Release : 2012-09-06
Category : Computers
ISBN : 9789535107415

Get Book

Discrete Event Simulations by Eldin Wee Chuan Lim Pdf

The Discrete Event Simulation (DES) method has received widespread attention and acceptance by both researchers and practitioners in recent years. The range of application of DES spans across many different disciplines and research fields. In research, further development and advancements of the basic DES algorithm continue to be sought while various hybrid methods derived by combining DES with other simulation techniques continue to be developed. This book presents state-of-the-art contributions on fundamental development of the DES method, novel integration of the method with other modeling techniques as well as applications towards simulating and analyzing the performances of various types of systems. This book will be of interest to undergraduate and graduate students, researchers as well as professionals who are actively engaged in DES related work.

Thermal Effects in Complex Machining Processes

Author : D Biermann,F Hollmann
Publisher : Springer
Page : 404 pages
File Size : 55,8 Mb
Release : 2017-08-31
Category : Technology & Engineering
ISBN : 9783319571201

Get Book

Thermal Effects in Complex Machining Processes by D Biermann,F Hollmann Pdf

This contributed volume contains the research results of the priority programme (PP) 1480 “Modelling, Simulation and Compensation of Thermal Effects for Complex Machining Processes", funded by the German Research Society (DFG). The topical focus of this programme is the simulation-based prediction and compensation of thermally induced workpiece deviations and subsurface damage effects. The approach to the topic is genuinely interdisciplinary, covering all relevant machining operations such as turning, milling, drilling and grinding. The target audience primarily comprises research experts and practitioners in the field of production engineering, but the book may also be beneficial for graduate students.

3rd International Conference on Thermal Issues in Machine Tools (ICTIMT2023)

Author : Steffen Ihlenfeldt
Publisher : Springer Nature
Page : 361 pages
File Size : 40,6 Mb
Release : 2023-06-01
Category : Science
ISBN : 9783031344862

Get Book

3rd International Conference on Thermal Issues in Machine Tools (ICTIMT2023) by Steffen Ihlenfeldt Pdf

This open access conference proceedings contains all the papers presented at the ICTIMT 2023, the 3rd International Conference on Thermal Issues in Machine Tools. The event takes place in Dresden, the capital of Saxony, from March 21-23 2023. The conference is organized by the Chair of Machine Tools Development and Adaptive Controls of the Technische Universität Dresden.

Applications

Author : Katharina Morik,Jörg Rahnenführer,Christian Wietfeld,Jens Buß,Andreas Becker
Publisher : Walter de Gruyter GmbH & Co KG
Page : 478 pages
File Size : 47,9 Mb
Release : 2022-12-31
Category : Science
ISBN : 9783110785982

Get Book

Applications by Katharina Morik,Jörg Rahnenführer,Christian Wietfeld,Jens Buß,Andreas Becker Pdf

Machine learning is part of Artificial Intelligence since its beginning. Certainly, not learning would only allow the perfect being to show intelligent behavior. All others, be it humans or machines, need to learn in order to enhance their capabilities. In the eighties of the last century, learning from examples and modeling human learning strategies have been investigated in concert. The formal statistical basis of many learning methods has been put forward later on and is still an integral part of machine learning. Neural networks have always been in the toolbox of methods. Integrating all the pre-processing, exploitation of kernel functions, and transformation steps of a machine learning process into the architecture of a deep neural network increased the performance of this model type considerably. Modern machine learning is challenged on the one hand by the amount of data and on the other hand by the demand of real-time inference. This leads to an interest in computing architectures and modern processors. For a long time, the machine learning research could take the von-Neumann architecture for granted. All algorithms were designed for the classical CPU. Issues of implementation on a particular architecture have been ignored. This is no longer possible. The time for independently investigating machine learning and computational architecture is over. Computing architecture has experienced a similarly rampant development from mainframe or personal computers in the last century to now very large compute clusters on the one hand and ubiquitous computing of embedded systems in the Internet of Things on the other hand. Cyber-physical systems’ sensors produce a huge amount of streaming data which need to be stored and analyzed. Their actuators need to react in real-time. This clearly establishes a close connection with machine learning. Cyber-physical systems and systems in the Internet of Things consist of diverse components, heterogeneous both in hard- and software. Modern multi-core systems, graphic processors, memory technologies and hardware-software codesign offer opportunities for better implementations of machine learning models. Machine learning and embedded systems together now form a field of research which tackles leading edge problems in machine learning, algorithm engineering, and embedded systems. Machine learning today needs to make the resource demands of learning and inference meet the resource constraints of used computer architecture and platforms. A large variety of algorithms for the same learning method and, moreover, diverse implementations of an algorithm for particular computing architectures optimize learning with respect to resource efficiency while keeping some guarantees of accuracy. The trade-off between a decreased energy consumption and an increased error rate, to just give an example, needs to be theoretically shown for training a model and the model inference. Pruning and quantization are ways of reducing the resource requirements by either compressing or approximating the model. In addition to memory and energy consumption, timeliness is an important issue, since many embedded systems are integrated into large products that interact with the physical world. If the results are delivered too late, they may have become useless. As a result, real-time guarantees are needed for such systems. To efficiently utilize the available resources, e.g., processing power, memory, and accelerators, with respect to response time, energy consumption, and power dissipation, different scheduling algorithms and resource management strategies need to be developed. This book series addresses machine learning under resource constraints as well as the application of the described methods in various domains of science and engineering. Turning big data into smart data requires many steps of data analysis: methods for extracting and selecting features, filtering and cleaning the data, joining heterogeneous sources, aggregating the data, and learning predictions need to scale up. The algorithms are challenged on the one hand by high-throughput data, gigantic data sets like in astrophysics, on the other hand by high dimensions like in genetic data. Resource constraints are given by the relation between the demands for processing the data and the capacity of the computing machinery. The resources are runtime, memory, communication, and energy. Novel machine learning algorithms are optimized with regard to minimal resource consumption. Moreover, learned predictions are applied to program executions in order to save resources. The three books will have the following subtopics: Volume 1: Machine Learning under Resource Constraints - Fundamentals Volume 2: Machine Learning and Physics under Resource Constraints - Discovery Volume 3: Machine Learning under Resource Constraints - Applications Volume 3 describes how the resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples. In the areas of health and medicine, it is demonstrated how machine learning can improve risk modelling, diagnosis, and treatment selection for diseases. Machine learning supported quality control during the manufacturing process in a factory allows to reduce material and energy cost and save testing times is shown by the diverse real-time applications in electronics and steel production as well as milling. Additional application examples show, how machine-learning can make traffic, logistics and smart cities more efficient and sustainable. Finally, mobile communications can benefit substantially from machine learning, for example by uncovering hidden characteristics of the wireless channel.

Transactions on Engineering Technologies

Author : Gi-Chul Yang,Sio-Iong Ao,Len Gelman
Publisher : Springer
Page : 773 pages
File Size : 52,6 Mb
Release : 2015-05-07
Category : Technology & Engineering
ISBN : 9789401798044

Get Book

Transactions on Engineering Technologies by Gi-Chul Yang,Sio-Iong Ao,Len Gelman Pdf

This volume contains fifty-one revised and extended research articles written by prominent researchers participating in the international conference on Advances in Engineering Technologies and Physical Science (London, UK, 2-4 July, 2014), under the World Congress on Engineering 2014 (WCE 2014). Topics covered include mechanical engineering, bioengineering, internet engineering, wireless networks, image engineering, manufacturing engineering and industrial applications. The book offers an overview of the tremendous advances made recently in engineering technologies and the physical sciences and their applications and also serves as an excellent reference for researchers and graduate students working in these fields.

Vibration Assisted Machining

Author : Lu Zheng,Wanqun Chen,Dehong Huo
Publisher : John Wiley & Sons
Page : 210 pages
File Size : 55,7 Mb
Release : 2021-02-16
Category : Science
ISBN : 9781119506355

Get Book

Vibration Assisted Machining by Lu Zheng,Wanqun Chen,Dehong Huo Pdf

The first book to comprehensively address the theory, kinematic modelling, numerical simulation and applications of vibration assisted machining Vibration Assisted Machining: Theory, Modelling and Applications covers all key aspects of vibration assisted machining, including cutting kinematics and dynamics, the effect of workpiece materials and wear of cutting tools. It also addresses practical applications for these techniques. Case studies provide detailed guidance on the design, modeling and testing of VAM systems. Experimental machining methods are also included, alongside considerations of state-of-the-art research developments on cutting force modeling and surface texture generation. Advances in computational modelling, surface metrology and manufacturing science over the past few decades have led to tremendous benefits for industry. This is the first comprehensive book dedicated to design, modelling, simulation and integration of vibration assisted machining system and processes, enabling wider industrial application of the technology. This book enables engineering students and professionals in manufacturing to understand and implement the latest vibration assisted machining techniques. Highlights include: Comprehensive coverage of the theory, kinematics modelling, numerical simulation and applications of vibration assisted machining (VAM) Case studies with detailed guidance on design, modelling and testing of VAM systems, as well as experimental machining methods Discussion of state-of-the-art research developments on cutting force modelling and surface texture generation Coverage of the history of VAM, its current applications and future directions for the technology Vibration Assisted Machining: Theory, Modelling and Applications provides engineering students, researchers, manufacturing engineers, production supervisors, tooling engineers, planning and application engineers and machine tool designers with the fundamentals of vibration assisted machining, along with methodologies for developing and implementing the technology to solve practical industry problems.