Modelling In Medicine And Biology Vi

Modelling In Medicine And Biology Vi Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Modelling In Medicine And Biology Vi book. This book definitely worth reading, it is an incredibly well-written.

Modelling in Medicine and Biology VI

Author : Mauro Ursino
Publisher : Unknown
Page : 573 pages
File Size : 53,5 Mb
Release : 2005-01-01
Category : Bioengineering
ISBN : 1845648455

Get Book

Modelling in Medicine and Biology VI by Mauro Ursino Pdf

Featuring contributions from the Sixth International Conference on Modelling in Medicine and Biology, this book covers a broad spectrum of topics including: Simulation of physiological processes; Cardiovascular system; Neural systems; Biomechanics; Computational fluid mechanics in biomedicine; Orthopaedics and bone mechanics; Simulations in surgery; Advanced technology in dentistry; Data acquisition and analysis; and Image processing.The book will be of interest both to medical and physical scientists and engineers and to professionals working in medical enterprises actively involved in this field.

Modelling in Medicine and Biology VI

Author : Mauro Ursino
Publisher : WIT Press
Page : 573 pages
File Size : 43,6 Mb
Release : 2005
Category : Science
ISBN : 9781845640248

Get Book

Modelling in Medicine and Biology VI by Mauro Ursino Pdf

Featuring contributions from the Sixth International Conference on Modelling in Medicine and Biology, this volume covers a broad spectrum of topics including the application of computers to simulate biomedical phenomena. It will be of interest both to medical and physical scientists and engineers and to professionals working in medical enterprises actively involved in this field.Areas highlighted include: Simulation of Physiological Processes; Computational Fluid Dynamics in Biomedicine; Orthopaedics and Bone Mechanics; Simulations in Surgery; Design and Simulation of Artificial Organs; Computers and Expert Systems in Medicine; Advanced Technology in Dentistry; Gait and Motion Analysis; Cardiovascular System; Virtual Reality in Medicine; Biomechanics; and Neural Systems.

Modelling in Medicine and Biology

Author : Anonim
Publisher : Unknown
Page : 128 pages
File Size : 55,8 Mb
Release : 2005
Category : Electronic
ISBN : OCLC:1074558869

Get Book

Modelling in Medicine and Biology by Anonim Pdf

Modelling in Medicine and Biology VIII

Author : C. A. Brebbia
Publisher : WIT Press
Page : 353 pages
File Size : 44,7 Mb
Release : 2009
Category : Technology & Engineering
ISBN : 9781845641832

Get Book

Modelling in Medicine and Biology VIII by C. A. Brebbia Pdf

Featuring contributions from the eighth International Conference on Modelling in Medicine and Biology, this volume covers a broad spectrum of topics including the application of computers to simulate biomedical phenomena. It will be of interest to medical and physical scientists and engineers.

Modelling in Medicine and Biology VII

Author : C. A. Brebbia
Publisher : WIT Press
Page : 353 pages
File Size : 48,6 Mb
Release : 2007
Category : Technology & Engineering
ISBN : 9781845640897

Get Book

Modelling in Medicine and Biology VII by C. A. Brebbia Pdf

Projections for advances in medical and biological technology will transform medical care and treatment. This is in great part due to the results of interaction and collaborations between the medical sciences and engineering. These advances will result in substantial progressions in health care and in the quality of life of the population.Computer models in particular have been increasingly successful in simulating biological phenomena. These are lending support to many applications, including amongst others cardiovascular systems, the study of orthopaedics and biomechanics, electrical simulation. Another important contribution, due to the wide availability of computational facilities and the development of better numerical algorithms, is the ability to acquire analyses, manage and visualise massive amounts of data. Containing papers presented at the Seventh International Conference on Modelling in Medicine and Biology, this book covers a broad range of topics which will be of particular interest to medical and physical scientists and engineers interested in the latest developments in simulations in medicine. It will also be relevant to professionals working in medical enterprises which are actively involved in this field. Topics include: Cardiovascular Systems; Simulations in Surgery; Biomechanics; Advanced Technology in Dentistry; Simulation of Physiological Processes; Neural Systems; Computational Fluid Dynamics in Biomedicine; Orthopaedics and Bone Mechanics; Data Acquisition and Analysis; Virtual Reality in Medicine; Expert Systems in Medicine; Design and Simulation of Artificial Organs.

Modelling in Medicine and Biology X

Author : R. Kiss,C. A. Brebbia
Publisher : WIT Press
Page : 301 pages
File Size : 54,9 Mb
Release : 2013-04-01
Category : Science
ISBN : 9781845647070

Get Book

Modelling in Medicine and Biology X by R. Kiss,C. A. Brebbia Pdf

This book contains contributions from the tenth International Conference on Modelling in Medicine and Biology. The advances covered in the computer modelling, and computational methods and measurements, and their integration, have applications in the study of orthopaedics, cardiovascular systems biomechanics and electrical simulation, amongst others, and are leading to progress in medical care and treatment.

6th European Conference of the International Federation for Medical and Biological Engineering

Author : Igor Lacković,Darko Vasic
Publisher : Springer
Page : 1035 pages
File Size : 55,5 Mb
Release : 2014-09-02
Category : Technology & Engineering
ISBN : 9783319111285

Get Book

6th European Conference of the International Federation for Medical and Biological Engineering by Igor Lacković,Darko Vasic Pdf

This volume presents the Proceedings of the 6th European Conference of the International Federation for Medical and Biological Engineering (MBEC2014), held in Dubrovnik September 7 – 11, 2014. The general theme of MBEC 2014 is "Towards new horizons in biomedical engineering" The scientific discussions in these conference proceedings include the following themes: - Biomedical Signal Processing - Biomedical Imaging and Image Processing - Biosensors and Bioinstrumentation - Bio-Micro/Nano Technologies - Biomaterials - Biomechanics, Robotics and Minimally Invasive Surgery - Cardiovascular, Respiratory and Endocrine Systems Engineering - Neural and Rehabilitation Engineering - Molecular, Cellular and Tissue Engineering - Bioinformatics and Computational Biology - Clinical Engineering and Health Technology Assessment - Health Informatics, E-Health and Telemedicine - Biomedical Engineering Education

Vito Volterra Symposium on Mathematical Models in Biology

Author : Claudio Barigozzi
Publisher : Springer Science & Business Media
Page : 422 pages
File Size : 54,5 Mb
Release : 2013-03-13
Category : Mathematics
ISBN : 9783642931611

Get Book

Vito Volterra Symposium on Mathematical Models in Biology by Claudio Barigozzi Pdf

The idea of organizing a symposium on mathematical models in biology came to some colleagues, members of the Accademia dei Lincei, in order to point out the importance of mathematics not only for supplying instruments for the elaboration and the evaluation of experimental data, but also for discussing the possibility of developing mathematical formulations of biological problems. This appeared particularly appropriate for genetics, where mathematical models have been of historical importance. When the organizing work had started, it became clear to us that the classic studies of Vito Volterra (who was also a Member of the Academy and its President from 1923 to 1926) might be con sidered a further reason to have the meeting in Rome at the Accademia dei Lincei; thus the meeting is dedicated to his memory. Biology, in its manifold aspects proved to Se ~ difficult object for an exhaustive approach; thus it became necessary for practical reasons to make a choice of problems. Therefore not all branches of biology have been represented. The proceedings of the symposium, as a whole, assume a knowledge of mathematics on the part of the reader; however the problem of teaching mathematics to biologists was the subject of a round table discussion, not recorded in these proceedings. On this were brought up some basic points to be recommended to teachers on an international basis, and a statement was prepared for circulation. The Organizing Committee TABLE OF CONTENTS TOPIC I MODELS OF NATUPAL SELECTION . . . . . . . • . . . .

Mathematical Models in Cell Biology and Cancer Chemotherapy

Author : M. Eisen
Publisher : Springer Science & Business Media
Page : 444 pages
File Size : 47,7 Mb
Release : 2013-03-13
Category : Mathematics
ISBN : 9783642931260

Get Book

Mathematical Models in Cell Biology and Cancer Chemotherapy by M. Eisen Pdf

The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on cell biology and a chapter on control theory have been included. Those readers who have had some exposure to biology may prefer to omit Chapter I (Cell Biology) and only use it as a reference when required. However, few biologists have been exposed to control theory. Chapter 7 provides a short, coherent and comprehensible presentation of this subject. The concepts of control theory are necessary for a full understanding of Chapters 8 and 9.

Mathematical Topics in Population Biology, Morphogenesis and Neurosciences

Author : Ei Teramoto,Masaya Yamaguti
Publisher : Springer Science & Business Media
Page : 359 pages
File Size : 44,7 Mb
Release : 2013-03-08
Category : Mathematics
ISBN : 9783642933608

Get Book

Mathematical Topics in Population Biology, Morphogenesis and Neurosciences by Ei Teramoto,Masaya Yamaguti Pdf

This volume represents the edited proceedings of the International Symposium on Mathematical Biology held in Kyoto, November 10-15, 1985. The symposium was or ganized by an international committee whose members are: E. Teramoto, M. Yamaguti, S. Amari, S.A. Levin, H. Matsuda, A. Okubo, L.M. Ricciardi, R. Rosen, and L.A. Segel. The symposium included technical sessions with a total of 11 invited papers, 49 contributed papers and a poster session where 40 papers were displayed. These Proceedings consist of selected papers from this symposium. This symposium was the second Kyoto meeting on mathematical topics in biology. The first was held in conjunction with the Sixth International Biophysics Congress in 1978. Since then this field of science has grown enormously, and the number of scientists in the field has rapidly increased. This is also the case in Japan. About 80 young japanese scientists and graduate students participated this time. . The sessions were divided into 4 ; , categories: 1) Mathematical Ecology and Population Biology, 2) Mathematical Theory of Developmental Biology and Morphogenesis, 3) Theoretical Neurosciences, and 4) Cell Kinetics and Other Topics. In every session, there were stimulating and active discussions among the participants. We are convinced that the symposium was highly successful in transmitting scientific information across disciplines and in establishing fruitful contacts among the participants. We owe this success to the cooperation of all participants.

Dynamical Models of Biology and Medicine

Author : Yang Kuang,Meng Fan,Shengqiang Liu,Wanbiao Ma
Publisher : MDPI
Page : 292 pages
File Size : 43,8 Mb
Release : 2019-10-04
Category : Technology & Engineering
ISBN : 9783039212170

Get Book

Dynamical Models of Biology and Medicine by Yang Kuang,Meng Fan,Shengqiang Liu,Wanbiao Ma Pdf

Mathematical and computational modeling approaches in biological and medical research are experiencing rapid growth globally. This Special Issue Book intends to scratch the surface of this exciting phenomenon. The subject areas covered involve general mathematical methods and their applications in biology and medicine, with an emphasis on work related to mathematical and computational modeling of the complex dynamics observed in biological and medical research. Fourteen rigorously reviewed papers were included in this Special Issue. These papers cover several timely topics relating to classical population biology, fundamental biology, and modern medicine. While the authors of these papers dealt with very different modeling questions, they were all motivated by specific applications in biology and medicine and employed innovative mathematical and computational methods to study the complex dynamics of their models. We hope that these papers detail case studies that will inspire many additional mathematical modeling efforts in biology and medicine

Human Respiration

Author : Vladimir Kulish
Publisher : WIT Press
Page : 241 pages
File Size : 40,7 Mb
Release : 2006
Category : Technology & Engineering
ISBN : 9781853129445

Get Book

Human Respiration by Vladimir Kulish Pdf

This title discusses the anatomy and physiology of human respiration, some of the newest macro- and microscopic models of the respiratory system, numerical simulation and computer visualization of gas transport phenomena, and applications of these models to medical diagnostics, treatment and safety.

Dynamical Models of Biology and Medicine

Author : Meng Fan,Yang Kuang,Shengqiang Liu,Wanbiao Ma
Publisher : Unknown
Page : 1 pages
File Size : 53,6 Mb
Release : 2019
Category : Electronic books
ISBN : 3039212184

Get Book

Dynamical Models of Biology and Medicine by Meng Fan,Yang Kuang,Shengqiang Liu,Wanbiao Ma Pdf

Mathematical and computational modeling approaches in biological and medical research are experiencing rapid growth globally. This Special Issue Book intends to scratch the surface of this exciting phenomenon. The subject areas covered involve general mathematical methods and their applications in biology and medicine, with an emphasis on work related to mathematical and computational modeling of the complex dynamics observed in biological and medical research. Fourteen rigorously reviewed papers were included in this Special Issue. These papers cover several timely topics relating to classical population biology, fundamental biology, and modern medicine. While the authors of these papers dealt with very different modeling questions, they were all motivated by specific applications in biology and medicine and employed innovative mathematical and computational methods to study the complex dynamics of their models. We hope that these papers detail case studies that will inspire many additional mathematical modeling efforts in biology and medicine.

Model-Based Hypothesis Testing in Biomedicine

Author : Rikard Johansson
Publisher : Linköping University Electronic Press
Page : 102 pages
File Size : 53,6 Mb
Release : 2017-10-03
Category : Electronic
ISBN : 9789176854570

Get Book

Model-Based Hypothesis Testing in Biomedicine by Rikard Johansson Pdf

The utilization of mathematical tools within biology and medicine has traditionally been less widespread compared to other hard sciences, such as physics and chemistry. However, an increased need for tools such as data processing, bioinformatics, statistics, and mathematical modeling, have emerged due to advancements during the last decades. These advancements are partly due to the development of high-throughput experimental procedures and techniques, which produce ever increasing amounts of data. For all aspects of biology and medicine, these data reveal a high level of inter-connectivity between components, which operate on many levels of control, and with multiple feedbacks both between and within each level of control. However, the availability of these large-scale data is not synonymous to a detailed mechanistic understanding of the underlying system. Rather, a mechanistic understanding is gained first when we construct a hypothesis, and test its predictions experimentally. Identifying interesting predictions that are quantitative in nature, generally requires mathematical modeling. This, in turn, requires that the studied system can be formulated into a mathematical model, such as a series of ordinary differential equations, where different hypotheses can be expressed as precise mathematical expressions that influence the output of the model. Within specific sub-domains of biology, the utilization of mathematical models have had a long tradition, such as the modeling done on electrophysiology by Hodgkin and Huxley in the 1950s. However, it is only in recent years, with the arrival of the field known as systems biology that mathematical modeling has become more commonplace. The somewhat slow adaptation of mathematical modeling in biology is partly due to historical differences in training and terminology, as well as in a lack of awareness of showcases illustrating how modeling can make a difference, or even be required, for a correct analysis of the experimental data. In this work, I provide such showcases by demonstrating the universality and applicability of mathematical modeling and hypothesis testing in three disparate biological systems. In Paper II, we demonstrate how mathematical modeling is necessary for the correct interpretation and analysis of dominant negative inhibition data in insulin signaling in primary human adipocytes. In Paper III, we use modeling to determine transport rates across the nuclear membrane in yeast cells, and we show how this technique is superior to traditional curve-fitting methods. We also demonstrate the issue of population heterogeneity and the need to account for individual differences between cells and the population at large. In Paper IV, we use mathematical modeling to reject three hypotheses concerning the phenomenon of facilitation in pyramidal nerve cells in rats and mice. We also show how one surviving hypothesis can explain all data and adequately describe independent validation data. Finally, in Paper I, we develop a method for model selection and discrimination using parametric bootstrapping and the combination of several different empirical distributions of traditional statistical tests. We show how the empirical log-likelihood ratio test is the best combination of two tests and how this can be used, not only for model selection, but also for model discrimination. In conclusion, mathematical modeling is a valuable tool for analyzing data and testing biological hypotheses, regardless of the underlying biological system. Further development of modeling methods and applications are therefore important since these will in all likelihood play a crucial role in all future aspects of biology and medicine, especially in dealing with the burden of increasing amounts of data that is made available with new experimental techniques. Användandet av matematiska verktyg har inom biologi och medicin traditionellt sett varit mindre utbredd jämfört med andra ämnen inom naturvetenskapen, såsom fysik och kemi. Ett ökat behov av verktyg som databehandling, bioinformatik, statistik och matematisk modellering har trätt fram tack vare framsteg under de senaste decennierna. Dessa framsteg är delvis ett resultat av utvecklingen av storskaliga datainsamlingstekniker. Inom alla områden av biologi och medicin så har dessa data avslöjat en hög nivå av interkonnektivitet mellan komponenter, verksamma på många kontrollnivåer och med flera återkopplingar både mellan och inom varje nivå av kontroll. Tillgång till storskaliga data är emellertid inte synonymt med en detaljerad mekanistisk förståelse för det underliggande systemet. Snarare uppnås en mekanisk förståelse först när vi bygger en hypotes vars prediktioner vi kan testa experimentellt. Att identifiera intressanta prediktioner som är av kvantitativ natur, kräver generellt sett matematisk modellering. Detta kräver i sin tur att det studerade systemet kan formuleras till en matematisk modell, såsom en serie ordinära differentialekvationer, där olika hypoteser kan uttryckas som precisa matematiska uttryck som påverkar modellens output. Inom vissa delområden av biologin har utnyttjandet av matematiska modeller haft en lång tradition, såsom den modellering gjord inom elektrofysiologi av Hodgkin och Huxley på 1950?talet. Det är emellertid just på senare år, med ankomsten av fältet systembiologi, som matematisk modellering har blivit ett vanligt inslag. Den något långsamma adapteringen av matematisk modellering inom biologi är bl.a. grundad i historiska skillnader i träning och terminologi, samt brist på medvetenhet om exempel som illustrerar hur modellering kan göra skillnad och faktiskt ofta är ett krav för en korrekt analys av experimentella data. I detta arbete tillhandahåller jag sådana exempel och demonstrerar den matematiska modelleringens och hypotestestningens allmängiltighet och tillämpbarhet i tre olika biologiska system. I Arbete II visar vi hur matematisk modellering är nödvändig för en korrekt tolkning och analys av dominant-negativ-inhiberingsdata vid insulinsignalering i primära humana adipocyter. I Arbete III använder vi modellering för att bestämma transporthastigheter över cellkärnmembranet i jästceller, och vi visar hur denna teknik är överlägsen traditionella kurvpassningsmetoder. Vi demonstrerar också frågan om populationsheterogenitet och behovet av att ta hänsyn till individuella skillnader mellan celler och befolkningen som helhet. I Arbete IV använder vi matematisk modellering för att förkasta tre hypoteser om hur fenomenet facilitering uppstår i pyramidala nervceller hos råttor och möss. Vi visar också hur en överlevande hypotes kan beskriva all data, inklusive oberoende valideringsdata. Slutligen utvecklar vi i Arbete I en metod för modellselektion och modelldiskriminering med hjälp av parametrisk ”bootstrapping” samt kombinationen av olika empiriska fördelningar av traditionella statistiska tester. Vi visar hur det empiriska ”log-likelihood-ratio-testet” är den bästa kombinationen av två tester och hur testet är applicerbart, inte bara för modellselektion, utan också för modelldiskriminering. Sammanfattningsvis är matematisk modellering ett värdefullt verktyg för att analysera data och testa biologiska hypoteser, oavsett underliggande biologiskt system. Vidare utveckling av modelleringsmetoder och tillämpningar är därför viktigt eftersom dessa sannolikt kommer att spela en avgörande roll i framtiden för biologi och medicin, särskilt när det gäller att hantera belastningen från ökande datamängder som blir tillgänglig med nya experimentella tekniker.