Silicon In Agriculture

Silicon In Agriculture Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Silicon In Agriculture book. This book definitely worth reading, it is an incredibly well-written.

Silicon in Agriculture

Author : Yongchao Liang,Miroslav Nikolic,Richard Bélanger,Haijun Gong,Alin Song
Publisher : Springer
Page : 235 pages
File Size : 55,5 Mb
Release : 2015-06-18
Category : Technology & Engineering
ISBN : 9789401799782

Get Book

Silicon in Agriculture by Yongchao Liang,Miroslav Nikolic,Richard Bélanger,Haijun Gong,Alin Song Pdf

This book mainly presents the current state of knowledge on the use of of Silicon (Si) in agriculture, including plants, soils and fertilizers. At the same time, it discusses the future interdisciplinary research that will be needed to further our knowledge and potential applications of Si in agriculture and in the environmental sciences in general. As the second most abundant element both on the surface of the Earth’s crust and in soils, Si is an agronomically essential or quasi-essential element for improving the yield and quality of crops. Addressing the use of Si in agriculture in both theory and practice, the book is primarily intended for graduate students and researchers in various fields of the agricultural, biological, and environmental sciences, as well as for agronomic and fertilizer industry experts and advisors. Dr. Yongchao Liang is a full professor at the College of Environmental and Resource Sciences of the Zhejiang University, Hangzhou, China. Dr. Miroslav Nikolic is a research professor at the Institute for Multidisciplinary Research of the University of Belgrade, Serbia. Dr. Richard Bélanger is a full professor at the Department of Plant Pathology of the Laval University, Canada and holder of a Canada Research Chair in plant protection. Dr. Haijun Gong is a full professor at College of Horticulture, Northwest A&F University, China. Dr. Alin Song is an associate professor at Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.

Silicon in Agriculture

Author : L.E. Datnoff,G.H. Snyder,G.H. Korndörfer
Publisher : Elsevier
Page : 424 pages
File Size : 53,8 Mb
Release : 2001-04-11
Category : Technology & Engineering
ISBN : 0080541224

Get Book

Silicon in Agriculture by L.E. Datnoff,G.H. Snyder,G.H. Korndörfer Pdf

Presenting the first book to focus on the importance of silicon for plant health and soil productivity and on our current understanding of this element as it relates to agriculture. Long considered by plant physiologists as a non-essential element, or plant nutrient, silicon was the center of attention at the first international conference on Silicon in Agriculture, held in Florida in 1999. Ninety scientists, growers, and producers of silicon fertilizer from 19 countries pondered a paradox in plant biology and crop science. They considered the element Si, second only to oxygen in quantity in soils, and absorbed by many plants in amounts roughly equivalent to those of such nutrients as sulfur or magnesium. Some species, including such staples as rice, may contain this element in amounts as great as or even greater than any other inorganic constituent. Compilations of the mineral composition of plants, however, and much of the plant physiological literature largely ignore this element. The participants in Silicon in Agriculture explored that extraordinary discrepancy between the silicon content of plants and that of the plant research enterprise. The participants, all of whom are active in agricultural science, with an emphasis on crop production, presented, and were presented with, a wealth of evidence that silicon plays a multitude of functions in the real world of plant life. Many soils in the humid tropics are low in plant available silicon, and the same condition holds in warm to hot humid areas elsewhere. Field experience, and experimentation even with nutrient solutions, reveals a multitude of functions of silicon in plant life. Resistance to disease is one, toleration of toxic metals such as aluminum, another. Silicon applications often minimize lodging of cereals (leaning over or even becoming prostrate), and often cause leaves to assume orientations more favorable for light interception. For some crops, rice and sugarcane in particular, spectacular yield responses to silicon application have been obtained. More recently, other crop species including orchids, daisies and yucca were reported to respond to silicon accumulation and plant growth/disease control. The culture solutions used for the hydroponic production of high-priced crops such as cucumbers and roses in many areas (The Netherlands for example) routinely included silicon, mainly for disease control. The biochemistry of silicon in plant cell walls, where most of it is located, is coming increasingly under scrutiny; the element may act as a crosslinking element between carbohydrate polymers. There is an increased conviction among scientists that the time is at hand to stop treating silicon as a plant biological nonentity. The element exists, and it matters.

Soil, Fertilizer, and Plant Silicon Research in Japan

Author : Jian Feng Ma,Eiichi Takahashi
Publisher : Elsevier
Page : 294 pages
File Size : 50,7 Mb
Release : 2002-08-09
Category : Technology & Engineering
ISBN : 0080525768

Get Book

Soil, Fertilizer, and Plant Silicon Research in Japan by Jian Feng Ma,Eiichi Takahashi Pdf

Silicon (Si) plays a significant role in the resistance of plants to multiple stresses including biotic and abiotic stresses. Silicon is also the only element that does not damage plants when accumulated in excess. However, the contribution of Si to plant growth has been largely ignored due to its universal existence in the earth's crust. From numerous intensive studies on Si, initiated in Japan about 80 years ago, Japanese scientists realized that Si was important for the healthy growth of rice and for stability of rice production. In a worldwide first, silicon was recognized as a valuable fertilizer in Japan. The beneficial effects of Si on rice growth in particular, are largely attributable to the characteristics of a silica gel that is accumulated on the epidermal tissues in rice. These effects are expressed most clearly under high-density cultivation systems with heavy applications of nitrogen. Si is therefore recognized now as an ''agronomically essential element'' in Japan. Recently, Si has become globally important because it generates resistance in many plants to diseases and pests, and may contribute to reduced rates of application of pesticides and fungicides. Silicon is also now considered as an environment-friendly element. The achievements of Si research in Japan are introduced in this book, in relation to soils, fertilizers and plant nutrition.

Silicon in Plants

Author : Durgesh Kumar Tripathi,Vijay Pratap Singh,Parvaiz Ahmad,Devendra Kumar Chauhan,Sheo Mohan Prasad
Publisher : CRC Press
Page : 399 pages
File Size : 41,9 Mb
Release : 2016-12-08
Category : Science
ISBN : 9781498739504

Get Book

Silicon in Plants by Durgesh Kumar Tripathi,Vijay Pratap Singh,Parvaiz Ahmad,Devendra Kumar Chauhan,Sheo Mohan Prasad Pdf

In the present era, rapid industrialization and urbanization has resulted in unwanted physiological, chemical, and biological changes in the environment that have harmful effects on crop quality and productivity. This situation is further worsened by the growing demand for food due to an ever increasing population. This forces plant scientists and agronomists to look forward for alternative strategies to enhance crop production and produce safer, healthier foods. Biotic and abiotic stresses are major constraints to crop productivity and have become an important challenge to agricultural scientists and agronomists due to the fact that both stress factors considerably reduce agriculture production worldwide per year. Silicon has various effects on plant growth and development, as well as crop yields. It increases photosynthetic activity, creates better disease resistance, reduces heavy metal toxicity, improves nutrient imbalance, and enhances drought tolerance. Silicon in Plants: Advances and Future Prospects presents the beneficial effects of silicon in improving productivity in plants and enhancing the capacity of plants to resist stresses from environmental factors. It compiles recent advances made worldwide in different leading laboratories concerning the role of silicon in plant biology in order to make these outcomes easily accessible to academicians, researchers, industrialists, and students. Nineteen chapters summarize information regarding the role of silicon in plants, their growth and development, physiological and molecular responses, and responses against the various abiotic stresses.

Metalloids in Plants

Author : Rupesh Deshmukh,Durgesh K. Tripathi,Gea Guerriero
Publisher : John Wiley & Sons
Page : 612 pages
File Size : 45,6 Mb
Release : 2020-05-18
Category : Science
ISBN : 9781119487203

Get Book

Metalloids in Plants by Rupesh Deshmukh,Durgesh K. Tripathi,Gea Guerriero Pdf

Understanding metalloids and the potential impact they can have upon crop success or failure Metalloids have a complex relationship with plant life. Exhibiting a combination of metal and non-metal characteristics, this small group of elements – which includes boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), and tellurium (Te) – may hinder or enhance the growth and survival of crops. The causes underlying the effects that different metalloids may have upon certain plants range from genetic variance to anatomical factors, the complexities of which can pose a challenge to botanists and agriculturalists of all backgrounds. With Metalloids in Plants, a group of leading plant scientists present a complete guide to the beneficial and adverse impacts of metalloids at morphological, anatomical, biochemical, and molecular levels. Insightful analysis of data on genetic regulation helps to inform the optimization of farming, indicating how one may boost the uptake of beneficial metalloids and reduce the influence of toxic ones. Contained within this essential new text, there are: Expert analyses of the role of metalloids in plants, covering their benefits as well as their adverse effects Explanations of the physiological, biochemical, and genetic factors at play in plant uptake of metalloids Outlines of the breeding and genetic engineering techniques involved in the generation of resistant crops Written for students and professionals in the fields of agriculture, botany, molecular biology, and biotechnology, Metalloids in Plants is an invaluable overview of the relationship between crops and these unusual elements.

Role of Silicon in Plants

Author : Rupesh K. Deshmukh,Jian Feng Ma,Richard R. Bélanger
Publisher : Frontiers Media SA
Page : 188 pages
File Size : 44,8 Mb
Release : 2017-12-06
Category : Electronic book
ISBN : 9782889453528

Get Book

Role of Silicon in Plants by Rupesh K. Deshmukh,Jian Feng Ma,Richard R. Bélanger Pdf

Silicon (Si) is gaining increased attention in the farming sector because of its beneficial effects observed in several crop species, particularly under stress conditions. The magnitude of benefits is predominantly observed in plant species that can accumulate Si above a certain threshold. Therefore, deciphering the molecular mechanisms and genetic factors conferring a plant ability to take up silicon is necessary. Along these lines, several efforts have been made to identify the specific genes regulating Si uptake and distribution in plant tissues. This information finds its usefulness in identifying Si-competent species, and could eventually lead to improving this ability in low-accumulating species. The successful exploitation of Si in agriculture depends highly on the understanding of different Si properties including plant-available Si from the soil, transport within tissues, deposition in planta, and Si effect on different metabolic and physiological processes. In addition, a better comprehension of external factors influencing Si uptake and deposition in plant tissue remains important. A plant can take up Si efficiently only in the form of silicic acid and most soils, despite containing high concentrations of Si, are deficient in plant-available Si. Consequently, soil amendment with fertilizers rich in plant-available Si is now viewed as an affordable option to protect plants from the biotic and abiotic stresses and achieve more sustainable cropping management worldwide. Articles compiled in the present research topic touch upon several aspects of Si properties and functionality in plants. The information will be helpful to further our understanding of the role of Si and contribute to exploit the benefits plants derive from it.

Sustainable Agriculture Reviews

Author : Eric Lichtfouse
Publisher : Springer Science & Business Media
Page : 371 pages
File Size : 42,9 Mb
Release : 2013-02-12
Category : Science
ISBN : 9789400759619

Get Book

Sustainable Agriculture Reviews by Eric Lichtfouse Pdf

Sustainable agriculture is a rapidly growing field aiming at producing food and energy in a sustainable way for humans and their children. Sustainable agriculture is a discipline that addresses current issues such as climate change, increasing food and fuel prices, poor-nation starvation, rich-nation obesity, water pollution, soil erosion, fertility loss, pest control, and biodiversity depletion. Novel solutions are proposed based on integrated knowledge from sciences as diverse as agronomy, soil science, molecular biology, chemistry, toxicology, ecology, economy, philosophy and social sciences. Because actual society issues are now intertwined, global, and fast-developing, sustainable agriculture will bring solutions to build a safer world. This book series gathers review articles that analyze current agricultural issues and knowledge, then propose alternative solutions. It will therefore help all scientists, decision-makers, professors, farmers and politicians who wish to build a safe agriculture, energy and food system for future generations.

Silicon and Plant Diseases

Author : Fabrício A. Rodrigues,Lawrence E. Datnoff
Publisher : Springer
Page : 148 pages
File Size : 43,7 Mb
Release : 2015-10-15
Category : Science
ISBN : 9783319229300

Get Book

Silicon and Plant Diseases by Fabrício A. Rodrigues,Lawrence E. Datnoff Pdf

Silicon, considered to be the second most abundant mineral element in soil, plays an important role in the mineral nutrition of plants. A wide variety of monocot and dicot species have benefited from silicon nutrition, whether direct or indirect, when they are exposed to different types of abiotic and or biotic stresses. Besides the many agronomic and horticultural benefits gained by maintaining adequate levels of this element in the soil and also in the plant tissue, the most notable effect of silicon is the reduction in the intensities of a number of plant diseases caused by biotrophic, hemibiotrophic and necrotrophic plant pathogens in many crops of great economic importance. The aim of this book is to summarize our current understanding of the effects of silicon on plant diseases. The chapters address the dynamics of silicon in soils and plants; the history of silicon in the control of plant diseases; the use of silicon to control soil-borne, seed-borne and foliar diseases in monocots and dicots; the mechanisms involved in the host resistance against infection by plant pathogens mediated by silicon as well as the current knowledge at the omics level, and finally, highlights and prospects for using silicon in the future.

Role of Silicon in Plants

Author : Anonim
Publisher : Unknown
Page : 0 pages
File Size : 43,6 Mb
Release : 2017
Category : Electronic
ISBN : OCLC:1368442205

Get Book

Role of Silicon in Plants by Anonim Pdf

Silicon (Si) is gaining increased attention in the farming sector because of its beneficial effects observed in several crop species, particularly under stress conditions. The magnitude of benefits is predominantly observed in plant species that can accumulate Si above a certain threshold. Therefore, deciphering the molecular mechanisms and genetic factors conferring a plant ability to take up silicon is necessary. Along these lines, several efforts have been made to identify the specific genes regulating Si uptake and distribution in plant tissues. This information finds its usefulness in identifying Si-competent species, and could eventually lead to improving this ability in low-accumulating species. The successful exploitation of Si in agriculture depends highly on the understanding of different Si properties including plant-available Si from the soil, transport within tissues, deposition in planta, and Si effect on different metabolic and physiological processes. In addition, a better comprehension of external factors influencing Si uptake and deposition in plant tissue remains important. A plant can take up Si efficiently only in the form of silicic acid and most soils, despite containing high concentrations of Si, are deficient in plant-available Si. Consequently, soil amendment with fertilizers rich in plant-available Si is now viewed as an affordable option to protect plants from the biotic and abiotic stresses and achieve more sustainable cropping management worldwide. Articles compiled in the present research topic touch upon several aspects of Si properties and functionality in plants. The information will be helpful to further our understanding of the role of Si and contribute to exploit the benefits plants derive from it.

Silicon in Plants

Author : Taylor & Francis Group
Publisher : CRC Press
Page : 378 pages
File Size : 49,9 Mb
Release : 2021-06-30
Category : Electronic
ISBN : 103209723X

Get Book

Silicon in Plants by Taylor & Francis Group Pdf

In the present era, rapid industrialization and urbanization has resulted in unwanted physiological, chemical, and biological changes in the environment that have harmful effects on crop quality and productivity. This situation is further worsened by the growing demand for food due to an ever increasing population. This forces plant scientists and agronomists to look forward for alternative strategies to enhance crop production and produce safer, healthier foods. Biotic and abiotic stresses are major constraints to crop productivity and have become an important challenge to agricultural scientists and agronomists due to the fact that both stress factors considerably reduce agriculture production worldwide per year. Silicon has various effects on plant growth and development, as well as crop yields. It increases photosynthetic activity, creates better disease resistance, reduces heavy metal toxicity, improves nutrient imbalance, and enhances drought tolerance. Silicon in Plants: Advances and Future Prospects presents the beneficial effects of silicon in improving productivity in plants and enhancing the capacity of plants to resist stresses from environmental factors. It compiles recent advances made worldwide in different leading laboratories concerning the role of silicon in plant biology in order to make these outcomes easily accessible to academicians, researchers, industrialists, and students. Nineteen chapters summarize information regarding the role of silicon in plants, their growth and development, physiological and molecular responses, and responses against the various abiotic stresses.

SOIL AND PLANT SILICON IN AGRICULTURE.

Author : MARTIN. HODSON
Publisher : Unknown
Page : 128 pages
File Size : 52,5 Mb
Release : 2019
Category : Electronic
ISBN : 0853104751

Get Book

SOIL AND PLANT SILICON IN AGRICULTURE. by MARTIN. HODSON Pdf

Horticultural Crops

Author : Hugues Kossi Baimey,Noureddine Hamamouch,Yao Adjiguita Kolombia
Publisher : BoD – Books on Demand
Page : 222 pages
File Size : 42,7 Mb
Release : 2020-02-05
Category : Science
ISBN : 9781838804213

Get Book

Horticultural Crops by Hugues Kossi Baimey,Noureddine Hamamouch,Yao Adjiguita Kolombia Pdf

Horticultural crops are important for human nutrition. To guarantee successful cultivation for quality and quantity yield, proper identification of pests and diseases, as well as abiotic factors undermining their production, is essential. This ten-chapter textbook describes fungi, bacteria, insects, and nematodes as important issues in horticulture. It documents their epidemiology and management strategies such as genetics and botanical and biological control used for their management. This comprehensive resource is essential for students and researchers of plant genetics, pathology, entomology, and nematology.

Fundamentals of Rice Crop Science

Author : Shouichi Yoshida
Publisher : Int. Rice Res. Inst.
Page : 278 pages
File Size : 41,5 Mb
Release : 1981
Category : Rice
ISBN : 9789711040529

Get Book

Fundamentals of Rice Crop Science by Shouichi Yoshida Pdf

Growth and development of the rice plant. Climatic environments and its influence. Mineral nutrition of rice. Nutritional disorders. Photosynthesis and respiration. Rice plant characters in relation to yielding ability. Physiological analysis of rice yield.

Boron in Plants and Agriculture

Author : Tariq Aftab,Marco Landi,Ioannis E. Papadakis,Fabrizio Araniti,Patrick H. Brown
Publisher : Academic Press
Page : 352 pages
File Size : 47,8 Mb
Release : 2022-06-18
Category : Science
ISBN : 9780323908580

Get Book

Boron in Plants and Agriculture by Tariq Aftab,Marco Landi,Ioannis E. Papadakis,Fabrizio Araniti,Patrick H. Brown Pdf

Boron in Plants and Agriculture: Exploring the Physiology of Boron and Its Impact on Plant Growth highlights the various emerging techniques and applications that are currently being used in plant-boron interaction studies, and provides a direction towards implementation of programs and practices that will enable sustainable production of crops, resilient to boron stress. Boron is an important micronutrient that plays a crucial role in the growth and development of plants, however despite a significant amount of recent research, there has remained a gap in the understanding of boron update and transportation. Boron deficiency is one of the most widespread deficiencies among plant micronutrients in agriculture and it causes a wide range of symptoms including the cessation of root elongation, reduced leaf expansion and the loss of fertility, depending on the plant species and developmental stage. This book reviews and integrates the currently available information on the impact of boron on functional and adaptive features of plants from molecular, biochemical, physiological to whole plant level. It is a key resource for those working in stress physiology, stress proteins, genomics, proteomics, genetic engineering and other fields of plant physiology related to boron nutrition, including agriculture. Highlights various emerging techniques and applications that are currently being used in plant-boron interaction studies, along with future prospects Provides direction towards the implementation of programs and practices that will enable sustainable production of crops that are resilient to boron stress Introduces global leaders working in the area of plant-boron interactions and shares their research findings

Silicon in Indian Agriculture

Author : N. B. Prakash,Narayan K. Savant,Kashinath Ragho Sonar
Publisher : Unknown
Page : 183 pages
File Size : 49,5 Mb
Release : 2018
Category : Silicon in agriculture
ISBN : 9383491957

Get Book

Silicon in Indian Agriculture by N. B. Prakash,Narayan K. Savant,Kashinath Ragho Sonar Pdf