Spatiotemporal Modeling Of Influenza

Spatiotemporal Modeling Of Influenza Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Spatiotemporal Modeling Of Influenza book. This book definitely worth reading, it is an incredibly well-written.

Spatiotemporal Modeling of Influenza

Author : William E. Schiesser
Publisher : Morgan & Claypool Publishers
Page : 113 pages
File Size : 51,7 Mb
Release : 2019-05-06
Category : Technology & Engineering
ISBN : 9781681735702

Get Book

Spatiotemporal Modeling of Influenza by William E. Schiesser Pdf

This book has a two-fold purpose: An introduction to the computer-based modeling of influenza, a continuing major worldwide communicable disease. The use of (1) as an illustration of a methodology for the computer-based modeling of communicable diseases. For the purposes of (1) and (2), a basic influenza model is formulated as a system of partial differential equations (PDEs) that define the spatiotemporal evolution of four populations: susceptibles, untreated and treated infecteds, and recovereds. The requirements of a well-posed PDE model are considered, including the initial and boundary conditions. The terms of the PDEs are explained. The computer implementation of the model is illustrated with a detailed line-by-line explanation of a system of routines in R (a quality, open-source scientific computing system that is readily available from the Internet). The R routines demonstrate the straightforward numerical solution of a system of nonlinear PDEs by the method of lines (MOL), an established general algorithm for PDEs. The presentation of the PDE modeling methodology is introductory with a minumum of formal mathematics (no theorems and proofs), and with emphasis on example applications. The intent of the book is to assist in the initial understanding and use of PDE mathematical modeling of communicable diseases, and the explanation and interpretation of the computed model solutions, as illustrated with the influenza model.

Spatiotemporal Modeling of Influenza

Author : William E. Schiesser
Publisher : Springer Nature
Page : 97 pages
File Size : 42,8 Mb
Release : 2022-05-31
Category : Technology & Engineering
ISBN : 9783031016653

Get Book

Spatiotemporal Modeling of Influenza by William E. Schiesser Pdf

This book has a two-fold purpose: (1) An introduction to the computer-based modeling of influenza, a continuing major worldwide communicable disease. (2) The use of (1) as an illustration of a methodology for the computer-based modeling of communicable diseases. For the purposes of (1) and (2), a basic influenza model is formulated as a system of partial differential equations (PDEs) that define the spatiotemporal evolution of four populations: susceptibles, untreated and treated infecteds, and recovereds. The requirements of a well-posed PDE model are considered, including the initial and boundary conditions. The terms of the PDEs are explained. The computer implementation of the model is illustrated with a detailed line-by-line explanation of a system of routines in R (a quality, open-source scientific computing system that is readily available from the Internet). The R routines demonstrate the straightforward numerical solution of a system of nonlinear PDEs by the method of lines (MOL), an established general algorithm for PDEs. The presentation of the PDE modeling methodology is introductory with a minumum of formal mathematics (no theorems and proofs), and with emphasis on example applications. The intent of the book is to assist in the initial understanding and use of PDE mathematical modeling of communicable diseases, and the explanation and interpretation of the computed model solutions, as illustrated with the influenza model.

Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases

Author : Dongmei Chen,Bernard Moulin,Jianhong Wu
Publisher : John Wiley & Sons
Page : 496 pages
File Size : 51,9 Mb
Release : 2014-12-08
Category : Medical
ISBN : 9781118629918

Get Book

Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases by Dongmei Chen,Bernard Moulin,Jianhong Wu Pdf

Features modern research and methodology on the spread of infectious diseases and showcases a broad range of multi-disciplinary and state-of-the-art techniques on geo-simulation, geo-visualization, remote sensing, metapopulation modeling, cloud computing, and pattern analysis Given the ongoing risk of infectious diseases worldwide, it is crucial to develop appropriate analysis methods, models, and tools to assess and predict the spread of disease and evaluate the risk. Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases features mathematical and spatial modeling approaches that integrate applications from various fields such as geo-computation and simulation, spatial analytics, mathematics, statistics, epidemiology, and health policy. In addition, the book captures the latest advances in the use of geographic information system (GIS), global positioning system (GPS), and other location-based technologies in the spatial and temporal study of infectious diseases. Highlighting the current practices and methodology via various infectious disease studies, Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases features: Approaches to better use infectious disease data collected from various sources for analysis and modeling purposes Examples of disease spreading dynamics, including West Nile virus, bird flu, Lyme disease, pandemic influenza (H1N1), and schistosomiasis Modern techniques such as Smartphone use in spatio-temporal usage data, cloud computing-enabled cluster detection, and communicable disease geo-simulation based on human mobility An overview of different mathematical, statistical, spatial modeling, and geo-simulation techniques Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases is an excellent resource for researchers and scientists who use, manage, or analyze infectious disease data, need to learn various traditional and advanced analytical methods and modeling techniques, and become aware of different issues and challenges related to infectious disease modeling and simulation. The book is also a useful textbook and/or supplement for upper-undergraduate and graduate-level courses in bioinformatics, biostatistics, public health and policy, and epidemiology.

Using R for Bayesian Spatial and Spatio-Temporal Health Modeling

Author : Andrew B. Lawson
Publisher : CRC Press
Page : 300 pages
File Size : 51,7 Mb
Release : 2021-04-28
Category : Mathematics
ISBN : 9781000376708

Get Book

Using R for Bayesian Spatial and Spatio-Temporal Health Modeling by Andrew B. Lawson Pdf

Progressively more and more attention has been paid to how location affects health outcomes. The area of disease mapping focusses on these problems, and the Bayesian paradigm has a major role to play in the understanding of the complex interplay of context and individual predisposition in such studies of disease. Using R for Bayesian Spatial and Spatio-Temporal Health Modeling provides a major resource for those interested in applying Bayesian methodology in small area health data studies. Features: Review of R graphics relevant to spatial health data Overview of Bayesian methods and Bayesian hierarchical modeling as applied to spatial data Bayesian Computation and goodness-of-fit Review of basic Bayesian disease mapping models Spatio-temporal modeling with MCMC and INLA Special topics include multivariate models, survival analysis, missing data, measurement error, variable selection, individual event modeling, and infectious disease modeling Software for fitting models based on BRugs, Nimble, CARBayes and INLA Provides code relevant to fitting all examples throughout the book at a supplementary website The book fills a void in the literature and available software, providing a crucial link for students and professionals alike to engage in the analysis of spatial and spatio-temporal health data from a Bayesian perspective using R. The book emphasizes the use of MCMC via Nimble, BRugs, and CARBAyes, but also includes INLA for comparative purposes. In addition, a wide range of packages useful in the analysis of geo-referenced spatial data are employed and code is provided. It will likely become a key reference for researchers and students from biostatistics, epidemiology, public health, and environmental science.

Demography of Population Health, Aging and Health Expenditures

Author : Christos H. Skiadas,Charilaos Skiadas
Publisher : Springer Nature
Page : 448 pages
File Size : 47,9 Mb
Release : 2020-08-24
Category : Social Science
ISBN : 9783030446956

Get Book

Demography of Population Health, Aging and Health Expenditures by Christos H. Skiadas,Charilaos Skiadas Pdf

This book provides theoretical and applied material for estimating vital parts of demography and health issues including the healthy aging process along with calculating the healthy life years lost to disability. It further includes the appropriate methodology for the optimum health expenditure allocation. Through providing data analysis, statistical and stochastic methodology, probability approach and important applications, the book explores topics such as aging and mortality, birth-death processes, self-perceived age, life-time and survival as well as pension and labor-force. By providing a methodological approach to health problems in demography and society including and quantifying important parameters, this book is a valuable guide for researchers, theoreticians and practitioners from various disciplines.

Human Mobility, Spatiotemporal Context, and Environmental Health: Recent Advances in Approaches and Methods

Author : Mei-Po Kwan
Publisher : MDPI
Page : 382 pages
File Size : 40,8 Mb
Release : 2019-07-12
Category : Medical
ISBN : 9783039211838

Get Book

Human Mobility, Spatiotemporal Context, and Environmental Health: Recent Advances in Approaches and Methods by Mei-Po Kwan Pdf

Environmental health researchers have long used concepts like the neighborhood effect to assessing people’s exposure to environmental influences and the associated health impact. However, these are static notions that ignore people’s daily mobility at various spatial and temporal scales (e.g., daily travel, migratory movements, and movements over the life course) and the influence of neighborhood contexts outside their residential neighborhoods. Recent studies have started to incorporate human mobility, non-residential neighborhoods, and the temporality of exposures through collecting and using data from GPS, accelerometers, mobile phones, various types of sensors, and social media. Innovative approaches and methods have been developed. This Special Issue aims to showcase studies that use new approaches, methods, and data to examine the role of human mobility and non-residential contexts on human health behaviors and outcomes. It includes 21 articles that cover a wide range of topics, including individual exposure to air pollution, exposure and access to green spaces, spatial access to healthcare services, environmental influences on physical activity, food environmental and diet behavior, exposure to noise and its impact on mental health, and broader methodological issues such as the uncertain geographic context problem (UGCoP) and the neighborhood effect averaging problem (NEAP). This collection will be a valuable reference for scholars and students interested in recent advances in the concepts and methods in environmental health and health geography.

Exosomes and MicroRNAs in Biomedical Science

Author : Hamed Mirzaei,Neda Rahimian,Hamid Reza Mirzaei,Javid Sadri Nahand,Michael R. Hamblin
Publisher : Morgan & Claypool Publishers
Page : 175 pages
File Size : 46,8 Mb
Release : 2022-04-21
Category : Technology & Engineering
ISBN : 9781636393483

Get Book

Exosomes and MicroRNAs in Biomedical Science by Hamed Mirzaei,Neda Rahimian,Hamid Reza Mirzaei,Javid Sadri Nahand,Michael R. Hamblin Pdf

MicroRNAs (miRNAs) are a member of the family of non-coding RNA molecules, and consist of small conserved sequences between 19–25 nucleotides in length that are responsible for regulating many cellular functions by affecting a wide range of messenger RNAs in a sequence specific manner. Fundamental biological processes like cell proliferation and growth, stress resistance, tumorigenesis, fat metabolism, and neural development have all been shown to be governed by miRNAs. miRNAs carry out the post-transcriptional silencing of gene expression via targeting the 30-untranslated region (UTR) of the complementary mRNA sequence. The dysregulation of the expression levels of various miRNAs is typical of tumor cells, and has been associated with tumor progression and poor prognosis. Many miRNAs are up-regulated in cancer, where they can silence tumor suppressor genes such as apoptosis and immune response associated genes. Therefore, it is possible to profile the expression levels of miRNAs as biomarkers, in order to diagnose cancer and noncancerous diseases. Moreover, cancer detection in the early stages is crucial in clinical situations. Characterization of miRNAs in serum, plasma, and other bodily fluids, and understanding their stability against RNase degradation, is important to assess their suitability as biomarkers and diagnostic tools. Exosomes play an important role in inter-cellular communications, and these nanosized particles have various functions in diverse physiological pathways, in normal as well as abnormal cells. Exosomes can carry diverse cargos such as mRNAs, miRNAs, and proteins that transfer information between donor and recipient cells. Furthermore, uptake of exosomes and their cargos may promote or suppress various molecular and cellular pathways, which alter the cellular behavior. Many reports have discussed the role of exosomes released from cancer cells on the progression of cancer at various stages. Exosomes and their cargos may affect the growth of the tumor, metastasis, drug resistance, immune system function, as well as angiogenesis. Therefore, exosomes have been explored as diagnostic biomarkers in many cancers. Moreover, exosomes can be used as biological vehicles to deliver different drugs and agents like doxorubicin (DOX), miRNAs, and siRNAs. The present book covers the role of exosomes and micro-RNAs in the pathogenesis and treatment of various diseases.

Emerging Trends in Immunomodulatory Nanomaterials Toward Cancer Therapy

Author : Anubhab Mukherjee,Vijay Sagar Madamsetty
Publisher : Springer Nature
Page : 84 pages
File Size : 50,5 Mb
Release : 2022-05-31
Category : Technology & Engineering
ISBN : 9783031016691

Get Book

Emerging Trends in Immunomodulatory Nanomaterials Toward Cancer Therapy by Anubhab Mukherjee,Vijay Sagar Madamsetty Pdf

Recently, immunomodulatory nanomaterials have gained immense attention due to their involvement in the modulation of the body’s immune response to cancer therapy. This book highlights various immunomodulatory nanomaterials (including organic, polymer, inorganic, liposomes, viral, and protein nanoparticles) and their role in cancer therapy. Additionally, the mechanism of immunomodulation is reviewed in detail. Finally, the challenges of these therapies and their future outlook are discussed. We believe this book will be helpful to a broad community including students, researchers, educators, and industrialists.

Mathematical Modeling

Author : Sandip Banerjee
Publisher : CRC Press
Page : 278 pages
File Size : 46,6 Mb
Release : 2014-02-07
Category : Mathematics
ISBN : 9781439854518

Get Book

Mathematical Modeling by Sandip Banerjee Pdf

Almost every year, a new book on mathematical modeling is published, so, why another? The answer springs directly from the fact that it is very rare to find a book that covers modeling with all types of differential equations in one volume. Until now. Mathematical Modeling: Models, Analysis and Applications covers modeling with all kinds of differential equations, namely ordinary, partial, delay, and stochastic. The book also contains a chapter on discrete modeling, consisting of differential equations, making it a complete textbook on this important skill needed for the study of science, engineering, and social sciences. More than just a textbook, this how-to guide presents tools for mathematical modeling and analysis. It offers a wide-ranging overview of mathematical ideas and techniques that provide a number of effective approaches to problem solving. Topics covered include spatial, delayed, and stochastic modeling. The text provides real-life examples of discrete and continuous mathematical modeling scenarios. MATLAB® and Mathematica® are incorporated throughout the text. The examples and exercises in each chapter can be used as problems in a project. Since mathematical modeling involves a diverse range of skills and tools, the author focuses on techniques that will be of particular interest to engineers, scientists, and others who use models of discrete and continuous systems. He gives students a foundation for understanding and using the mathematics that is the basis of computers, and therefore a foundation for success in engineering and science streams.

Artificial Intelligence, Big Data and Data Science in Statistics

Author : Ansgar Steland,Kwok-Leung Tsui
Publisher : Springer Nature
Page : 378 pages
File Size : 47,5 Mb
Release : 2022-11-15
Category : Mathematics
ISBN : 9783031071553

Get Book

Artificial Intelligence, Big Data and Data Science in Statistics by Ansgar Steland,Kwok-Leung Tsui Pdf

This book discusses the interplay between statistics, data science, machine learning and artificial intelligence, with a focus on environmental science, the natural sciences, and technology. It covers the state of the art from both a theoretical and a practical viewpoint and describes how to successfully apply machine learning methods, demonstrating the benefits of statistics for modeling and analyzing high-dimensional and big data. The book’s expert contributions include theoretical studies of machine learning methods, expositions of general methodologies for sound statistical analyses of data as well as novel approaches to modeling and analyzing data for specific problems and areas. In terms of applications, the contributions deal with data as arising in industrial quality control, autonomous driving, transportation and traffic, chip manufacturing, photovoltaics, football, transmission of infectious diseases, Covid-19 and public health. The book will appeal to statisticians and data scientists, as well as engineers and computer scientists working in related fields or applications.

Applied Statistical Inference

Author : Leonhard Held,Daniel Sabanés Bové
Publisher : Springer Science & Business Media
Page : 376 pages
File Size : 48,6 Mb
Release : 2013-11-12
Category : Mathematics
ISBN : 9783642378874

Get Book

Applied Statistical Inference by Leonhard Held,Daniel Sabanés Bové Pdf

This book covers modern statistical inference based on likelihood with applications in medicine, epidemiology and biology. Two introductory chapters discuss the importance of statistical models in applied quantitative research and the central role of the likelihood function. The rest of the book is divided into three parts. The first describes likelihood-based inference from a frequentist viewpoint. Properties of the maximum likelihood estimate, the score function, the likelihood ratio and the Wald statistic are discussed in detail. In the second part, likelihood is combined with prior information to perform Bayesian inference. Topics include Bayesian updating, conjugate and reference priors, Bayesian point and interval estimates, Bayesian asymptotics and empirical Bayes methods. Modern numerical techniques for Bayesian inference are described in a separate chapter. Finally two more advanced topics, model choice and prediction, are discussed both from a frequentist and a Bayesian perspective. A comprehensive appendix covers the necessary prerequisites in probability theory, matrix algebra, mathematical calculus, and numerical analysis.

Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases

Author : Piero Manfredi,Alberto D'Onofrio
Publisher : Springer Science & Business Media
Page : 329 pages
File Size : 43,7 Mb
Release : 2013-01-04
Category : Mathematics
ISBN : 9781461454748

Get Book

Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases by Piero Manfredi,Alberto D'Onofrio Pdf

This volume summarizes the state-of-the-art in the fast growing research area of modeling the influence of information-driven human behavior on the spread and control of infectious diseases. In particular, it features the two main and inter-related “core” topics: behavioral changes in response to global threats, for example, pandemic influenza, and the pseudo-rational opposition to vaccines. In order to make realistic predictions, modelers need to go beyond classical mathematical epidemiology to take these dynamic effects into account. With contributions from experts in this field, the book fills a void in the literature. It goes beyond classical texts, yet preserves the rationale of many of them by sticking to the underlying biology without compromising on scientific rigor. Epidemiologists, theoretical biologists, biophysicists, applied mathematicians, and PhD students will benefit from this book. However, it is also written for Public Health professionals interested in understanding models, and to advanced undergraduate students, since it only requires a working knowledge of mathematical epidemiology.

Nanotechnology for Bioengineers

Author : Wujie Zhang
Publisher : Springer Nature
Page : 95 pages
File Size : 49,6 Mb
Release : 2022-05-31
Category : Technology & Engineering
ISBN : 9783031016684

Get Book

Nanotechnology for Bioengineers by Wujie Zhang Pdf

Nanotechnology is an interdisciplinary field that is rapidly evolving and expanding. Significant advancements have been made in nanotechnology-related disciplines in the past few decades and continued growth and progression in the field are anticipated. Moreover, nanotechnology, omnipresent in innovation, has been applied to resolve critical challenges in nearly every field, especially those related to biological technologies and processes. This book, used as either a textbook for a short course or a reference book, provides state-of-the-art analysis of essential topics in nanotechnology for bioengineers studying and working in biotechnology, chemical/biochemical, pharmaceutical, biomedical, and other related fields. The book topics range from introduction to nanotechnology and nanofabrication to applications of nanotechnology in various biological fields. This book not only intends to introduce bioengineers to the amazing world of nanotechnology, but also inspires them to use nanotechnology to address some of the world's biggest challenges.

Fast Quantitative Magnetic Resonance Imaging

Author : Guido Buonincontri,Joshua Kaggie,Martin Graves
Publisher : Springer Nature
Page : 124 pages
File Size : 47,7 Mb
Release : 2022-05-31
Category : Technology & Engineering
ISBN : 9783031016677

Get Book

Fast Quantitative Magnetic Resonance Imaging by Guido Buonincontri,Joshua Kaggie,Martin Graves Pdf

Among medical imaging modalities, magnetic resonance imaging (MRI) stands out for its excellent soft-tissue contrast, anatomical detail, and high sensitivity for disease detection. However, as proven by the continuous and vast effort to develop new MRI techniques, limitations and open challenges remain. The primary source of contrast in MRI images are the various relaxation parameters associated with the nuclear magnetic resonance (NMR) phenomena upon which MRI is based. Although it is possible to quantify these relaxation parameters (qMRI) they are rarely used in the clinic, and radiological interpretation of images is primarily based upon images that are relaxation time weighted. The clinical adoption of qMRI is mainly limited by the long acquisition times required to quantify each relaxation parameter as well as questions around their accuracy and reliability. More specifically, the main limitations of qMRI methods have been the difficulty in dealing with the high inter-parameter correlations and a high sensitivity to MRI system imperfections. Recently, new methods for rapid qMRI have been proposed. The multi-parametric models at the heart of these techniques have the main advantage of accounting for the correlations between the parameters of interest as well as system imperfections. This holistic view on the MR signal makes it possible to regress many individual parameters at once, potentially with a higher accuracy. Novel, accurate techniques promise a fast estimation of relevant MRI quantities, including but not limited to longitudinal (T1) and transverse (T2) relaxation times. Among these emerging methods, MR Fingerprinting (MRF), synthetic MR (syMRI or MAGIC), and T1‒T2 Shuffling are making their way into the clinical world at a very fast pace. However, the main underlying assumptions and algorithms used are sometimes different from those found in the conventional MRI literature, and can be elusive at times. In this book, we take the opportunity to study and describe the main assumptions, theoretical background, and methods that are the basis of these emerging techniques. Quantitative transient state imaging provides an incredible, transformative opportunity for MRI. There is huge potential to further extend the physics, in conjunction with the underlying physiology, toward a better theoretical description of the underlying models, their application, and evaluation to improve the assessment of disease and treatment efficacy.

3D Electro-Rotation of Single Cells

Author : Liang Huang,Guido Buonincontri,Wenhui Wang
Publisher : Springer Nature
Page : 101 pages
File Size : 52,5 Mb
Release : 2022-05-31
Category : Technology & Engineering
ISBN : 9783031016660

Get Book

3D Electro-Rotation of Single Cells by Liang Huang,Guido Buonincontri,Wenhui Wang Pdf

Dielectrophoresis microfluidic chips have been widely used in various biological applications due to their advantages of convenient operation, high throughput, and low cost. However, most of the DEP microfluidic chips are based on 2D planar electrodes which have some limitations, such as electric field attenuation, small effective working regions, and weak DEP forces. In order to overcome the limitations of 2D planar electrodes, two kinds of thick-electrode DEP chips were designed to realize manipulation and multi-parameter measurement of single cells. Based on the multi-electrode structure of thick-electrode DEP, a single-cell 3D electro-rotation chip of "Armillary Sphere" was designed. The chip uses four thick electrodes and a bottom planar electrode to form an electric field chamber, which can control 3D rotation of single cells under different electric signal configurations. Electrical property measurement and 3D image reconstruction of single cells are achieved based on single-cell 3D rotation. This work overcomes the limitations of 2D planar electrodes and effectively solves the problem of unstable spatial position of single-cell samples, and provides a new platform for single-cell analysis. Based on multi-electrode structure of thick-electrode DEP, a microfluidic chip with optoelectronic integration was presented. A dual-fiber optical stretcher embedded in thick electrodes can trap and stretch a single cell while the thick electrodes are used for single-cell rotation. Stretching and rotation manipulation gives the chip the ability to simultaneously measure mechanical and electrical properties of single cells, providing a versatile platform for single-cell analysis, further extending the application of thick-electrode DEP in biological manipulation and analysis.