Time Reversability Computer Simulation Algorithms Chaos

Time Reversability Computer Simulation Algorithms Chaos Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Time Reversability Computer Simulation Algorithms Chaos book. This book definitely worth reading, it is an incredibly well-written.

Time Reversibility, Computer Simulation, Algorithms, Chaos

Author : William Graham Hoover,Carol Griswold Hoover
Publisher : World Scientific
Page : 428 pages
File Size : 50,9 Mb
Release : 2012-06-11
Category : Science
ISBN : 9789814452977

Get Book

Time Reversibility, Computer Simulation, Algorithms, Chaos by William Graham Hoover,Carol Griswold Hoover Pdf

A small army of physicists, chemists, mathematicians, and engineers has joined forces to attack a classic problem, the “reversibility paradox”, with modern tools. This book describes their work from the perspective of computer simulation, emphasizing the authors' approach to the problem of understanding the compatibility, and even inevitability, of the irreversible second law of thermodynamics with an underlying time-reversible mechanics. Computer simulation has made it possible to probe reversibility from a variety of directions and “chaos theory” or “nonlinear dynamics” has supplied a useful vocabulary and a set of concepts, which allow a fuller explanation of irreversibility than that available to Boltzmann or to Green, Kubo and Onsager. Clear illustration of concepts is emphasized throughout, and reinforced with a glossary of technical terms from the specialized fields which have been combined here to focus on a common theme. The book begins with a discussion, contrasting the idealized reversibility of basic physics against the pragmatic irreversibility of real life. Computer models, and simulation, are next discussed and illustrated. Simulations provide the means to assimilate concepts through worked-out examples. State-of-the-art analyses, from the point of view of dynamical systems, are applied to many-body examples from nonequilibrium molecular dynamics and to chaotic irreversible flows from finite-difference, finite-element, and particle-based continuum simulations. Two necessary concepts from dynamical-systems theory — fractals and Lyapunov instability — are fundamental to the approach. Undergraduate-level physics, calculus, and ordinary differential equations are sufficient background for a full appreciation of this book, which is intended for advanced undergraduates, graduates, and research workers. The generous assortment of examples worked out in the text will stimulate readers to explore the rich and fruitful field of study which links fundamental reversible laws of physics to the irreversibility surrounding us all. This expanded edition stresses and illustrates computer algorithms with many new worked-out examples, and includes considerable new material on shockwaves, Lyapunov instability and fluctuations. Sample Chapter(s) Chapter 1: Time Reversibility, Computer Simulation, Algorithms, Chaos (1,908 KB) Contents:Time Reversibility, Computer Simulation, Algorithms, ChaosTime-Reversibility in Physics and ComputationGibbs' Statistical MechanicsIrreversibility in Real LifeMicroscopic Computer SimulationShockwaves RevisitedMacroscopic Computer SimulationChaos, Lyapunov Instability, FractalsResolving the Reversibility ParadoxAfterword — a Research Perspective Readership: Students of statistical physics and computer simulation. Keywords:Time Reversibility;Computer Simulation;Algorithms;ChaosKey Features:Provides comprehensive resource for simulation and analysis of classical equilibrium and nonequilibrium systems, both small and largeClear and thorough exposition of latest algorithms and techniques for research in simulationHands-on algorithms, clear analysis of recent developments, assessment of the state-of-the-artReviews: “Bill and Carol Hoover have teamed up to produce this greatly expanded new edition of Bill's earlier book grappling with one of the oldest problems in physics — reconciling the irreversibility of thermodynamics with the reversibility of Newtonian mechanics. It represents a personal account of a lifetime of research, including insights provided by advances in chaos, fractals, and computer simulation. It is the best source for anyone seeking a deep understanding of these seemingly paradoxical basic laws of physics.” Julien Clinton Sprott Emeritus Professor of Physics, University of Wisconsin – Madison Author of Chaos and Time-Series Analysis and Elegant Chaos “The second edition with over 100 pages of new material, gives an up-to-date and distinctive treatment of physical issues, emphasizing the need for a holistic view incorporating theory, simulation and experiment … It provides rich inspiration and insight for graduate students and more experienced researchers alike. This work challenges philosophers and mathematicians to engage with the latest numerical and experimental findings, and practitioners of quantum chaos and nanotechnology to incorporate and extend the underpinning classical irreversibility.” Dr Carl Dettmann University of Bristol “Many remarks and asides are very informative and will be of interest to a broad range of physicists. I was pleasantly surprised by the overall ambition, breadth and scope of this excellent book. ” Contemporary Physics Review of the First Edition: “The author has written a lively, informal, and somewhat personal review of a branch of statistical physics that he has helped develop over the past two decades or so.” Mathematical Reviews

Time Reversibility, Computer Simulation, and Chaos

Author : William Graham Hoover
Publisher : World Scientific
Page : 284 pages
File Size : 40,6 Mb
Release : 1999
Category : Science
ISBN : 9810240732

Get Book

Time Reversibility, Computer Simulation, and Chaos by William Graham Hoover Pdf

A small army of physicists, chemists, mathematicians, and engineers has joined forces to attack a classic problem, the ?reversibility paradox?, with modern tools. This book describes their work from the perspective of computer simulation, emphasizing the author's approach to the problem of understanding the compatibility, and even inevitability, of the irreversible second law of thermodynamics with an underlying time-reversible mechanics. Computer simulation has made it possible to probe reversibility from a variety of directions and ?chaos theory? or ?nonlinear dynamics? has supplied a useful vocabulary and set of concepts, which allow a fuller explanation of irreversibility than that available to Boltzmann or to Green and Kubo and Onsager. Clear illustration of concepts is emphasized throughout, and reinforced with a glossary of technical terms from the specialized fields which have been combined here to focus on a common theme.The book begins with a discussion contrasting the idealized reversibility of basic physics and the pragmatic irreversibility of real life. Computer models, and simulation, are next discussed and illustrated. Simulations provide the means to assimilate concepts through worked-out examples. State-of-the-art analyses, from the point of view of dynamical systems, are applied to many-body examples from nonequilibrium molecular dynamics and to chaotic irreversible flows from finite-difference, finite-element, and particle-based continuum simulations. Two necessary concepts from dynamical-systems theory ? fractals and Lyapunov instability ? are fundamental to the approach.Undergraduate-level physics, calculus, and ordinary differential equations are sufficient background for a full appreciation of this book, which is intended for advanced undergraduates, graduates, and research workers. The generous assortment of examples worked out in the text will stimulate readers to explore the rich and fruitful field of study which links fundamental reversible laws of physics to the irreversibility surrounding us all.

Time Reversibility, Computer Simulation, Algorithms, Chaos

Author : William Graham Hoover,Carol Griswold Hoover
Publisher : World Scientific
Page : 426 pages
File Size : 40,7 Mb
Release : 2012
Category : Mathematics
ISBN : 9789814383165

Get Book

Time Reversibility, Computer Simulation, Algorithms, Chaos by William Graham Hoover,Carol Griswold Hoover Pdf

The book begins with a discussion, contrasting the idealized reversibility of basic physics against the pragmatic irreversibility of real life. Computer models, and simulation, are next discussed and illustrated. Simulations provide the means to assimilate concepts through worked-out examples. State-of-the-art analyses, from the point of view of dynamical systems, are applied to many-body examples from nonequilibrium molecular dynamics and to chaotic irreversible flows from finite-difference, finite-element, and particle-based continuum simulations. Two necessary concepts from dynamical-systems theory - fractals and Lyapunov instability - are fundamental to the approach. Undergraduate-level physics, calculus, and ordinary differential equations are sufficient background for a full appreciation of this book, which is intended for advanced undergraduates, graduates, and research workers.

Time Reversability, Computer Simulation, Algorithms, Chaos

Author : William Graham Hoover
Publisher : World Scientific
Page : 426 pages
File Size : 47,9 Mb
Release : 2012
Category : Mathematics
ISBN : 9789814383172

Get Book

Time Reversability, Computer Simulation, Algorithms, Chaos by William Graham Hoover Pdf

The book begins with a discussion, contrasting the idealized reversibility of basic physics against the pragmatic irreversibility of real life. Computer models, and simulation, are next discussed and illustrated. Simulations provide the means to assimilate concepts through worked-out examples. State-of-the-art analyses, from the point of view of dynamical systems, are applied to many-body examples from nonequilibrium molecular dynamics and to chaotic irreversible flows from finite-difference, finite-element, and particle-based continuum simulations. Two necessary concepts from dynamical-systems theory - fractals and Lyapunov instability - are fundamental to the approach. Undergraduate-level physics, calculus, and ordinary differential equations are sufficient background for a full appreciation of this book, which is intended for advanced undergraduates, graduates, and research workers.

Simulation and Control of Chaotic Nonequilibrium Systems

Author : William Graham Hoover,Carol Griswold Hoover
Publisher : World Scientific Publishing Company
Page : 324 pages
File Size : 53,8 Mb
Release : 2015-02-02
Category : Science
ISBN : 9789814656849

Get Book

Simulation and Control of Chaotic Nonequilibrium Systems by William Graham Hoover,Carol Griswold Hoover Pdf

This book aims to provide a lively working knowledge of the thermodynamic control of microscopic simulations, while summarizing the historical development of the subject, along with some personal reminiscences. Many computational examples are described so that they are well-suited to learning by doing. The contents enhance the current understanding of the reversibility paradox and are accessible to advanced undergraduates and researchers in physics, computation, and irreversible thermodynamics.

Microscopic And Macroscopic Simulation Techniques: Kharagpur Lectures

Author : Hoover William Graham,Hoover Carol Griswold
Publisher : World Scientific
Page : 412 pages
File Size : 51,5 Mb
Release : 2018-03-13
Category : Science
ISBN : 9789813232549

Get Book

Microscopic And Macroscopic Simulation Techniques: Kharagpur Lectures by Hoover William Graham,Hoover Carol Griswold Pdf

This book aims to provide an example-based education in numerical methods for atomistic and continuum simulations of systems at and away from equilibrium. The focus is on nonequilibrium systems, stressing the use of tools from dynamical systems theory for their analysis. Lyapunov instability and fractal dimensionality are introduced and algorithms for their analysis are detailed. The book is intended to be self-contained and accessible to students who are comfortable with calculus and differential equations. The wide range of topics covered will provide students, researchers and academics with effective tools for formulating and solving interesting problems, both atomistic and continuum. The detailed description of the use of thermostats to control nonequilibrium systems will help readers in writing their own programs rather than being saddled with packaged software. Contents: Mechanics, Molecular Dynamics, and Gibbs' Statistical Mechanics Numerical Integration and Error Analysis Molecular Dynamics with Thermostats Simple Systems with Thermal Constraints Ergodicity and Its Importance in Small Systems Equilibrium Thermodynamics + Nonequilibrium Hydrodynamics Statistical Mechanics of Small Systems Microscopic Reversibility, Macroscopic Irreversibility Lyapunov Instability, Fractals, and Chaos I Lyapunov Instability, Fractals, and Chaos II Smooth-Particle Continuum Mechanics Epilogue Readership: Undergraduate, graduate students, researchers focusing on statistical mechanics and numerical simulation. Keywords: Numerical Methods;Simulation;Nonequilibrium;Molecular Dynamics;Continuum Mechanics;Statistical Mechanics;Chaos;Lyapunov Instability;Hydrodynamics;ThermodynamicsReview: Key Features: Three useful areas covered — treatment of control variables such as thermostats and ergostats, dynamical system analysis and the use of smooth particle techniques for analyzing molecular dynamics, and the solution of continuum problems

Chaos

Author : H. J. Korsch,H.-J. Jodl
Publisher : Springer Science & Business Media
Page : 342 pages
File Size : 55,8 Mb
Release : 1999
Category : Chaotic behavior in systems
ISBN : UCSD:31822028338358

Get Book

Chaos by H. J. Korsch,H.-J. Jodl Pdf

This CD-ROM and book present a selection of executable programs with introductory texts to chaos theory and its simulation. It is designed to be an introduction to fundamentals and applications in the field for students, and it contains numerical experiments and suggestions for further studies.

American Journal of Physics

Author : Anonim
Publisher : Unknown
Page : 680 pages
File Size : 46,6 Mb
Release : 2002
Category : Physics
ISBN : UOM:39015047892339

Get Book

American Journal of Physics by Anonim Pdf

Chaos, Dynamics, and Fractals

Author : Joseph L McCauley
Publisher : Unknown
Page : 349 pages
File Size : 44,5 Mb
Release : 2014-05-14
Category : Electronic
ISBN : 1107398576

Get Book

Chaos, Dynamics, and Fractals by Joseph L McCauley Pdf

The author presents deterministic chaos from the standpoint of theoretical computer arithmetic, leading to universal properties described by symbolic dynamics.

Practical Numerical Algorithms for Chaotic Systems

Author : Thomas S. Parker,Leon Chua
Publisher : Springer Science & Business Media
Page : 354 pages
File Size : 54,5 Mb
Release : 2012-12-06
Category : Science
ISBN : 9781461234869

Get Book

Practical Numerical Algorithms for Chaotic Systems by Thomas S. Parker,Leon Chua Pdf

One of the basic tenets of science is that deterministic systems are completely predictable-given the initial condition and the equations describing a system, the behavior of the system can be predicted 1 for all time. The discovery of chaotic systems has eliminated this viewpoint. Simply put, a chaotic system is a deterministic system that exhibits random behavior. Though identified as a robust phenomenon only twenty years ago, chaos has almost certainly been encountered by scientists and engi neers many times during the last century only to be dismissed as physical noise. Chaos is such a wide-spread phenomenon that it has now been reported in virtually every scientific discipline: astronomy, biology, biophysics, chemistry, engineering, geology, mathematics, medicine, meteorology, plasmas, physics, and even the social sci ences. It is no coincidence that during the same two decades in which chaos has grown into an independent field of research, computers have permeated society. It is, in fact, the wide availability of inex pensive computing power that has spurred much of the research in chaotic dynamics. The reason is simple: the computer can calculate a solution of a nonlinear system. This is no small feat. Unlike lin ear systems, where closed-form solutions can be written in terms of the system's eigenvalues and eigenvectors, few nonlinear systems and virtually no chaotic systems possess closed-form solutions.

Smooth Particle Applied Mechanics: The State Of The Art

Author : William Graham Hoover
Publisher : World Scientific
Page : 315 pages
File Size : 44,8 Mb
Release : 2006-11-02
Category : Mathematics
ISBN : 9789814477185

Get Book

Smooth Particle Applied Mechanics: The State Of The Art by William Graham Hoover Pdf

This book takes readers through all the steps necessary for solving hard problems in continuum mechanics with smooth particle methods. Pedagogical problems clarify the generation of initial conditions, the treatment of boundary conditions, the integration of the equations of motion, and the analysis of the results. Particular attention is paid to the parallel computing necessary for large problems and to the graphic displays, including debugging software, required for the efficient completion of computational projects.The book is self-contained, with summaries of classical particle mechanics and continuum mechanics for both fluids and solids, computer languages, the stability of numerical methods, Lyapunov spectra, and message-passing parallel computing. The main difficulties faced by meshless particle methods are discussed and the means of overcoming them are illustrated with worked examples.

Computational Statistical Mechanics

Author : W.G. Hoover
Publisher : Elsevier
Page : 330 pages
File Size : 42,8 Mb
Release : 2012-12-02
Category : Science
ISBN : 9780444596598

Get Book

Computational Statistical Mechanics by W.G. Hoover Pdf

Computational Statistical Mechanics describes the use of fast computers to simulate the equilibrium and nonequilibrium properties of gases, liquids, and solids at, and away from equilibrium. The underlying theory is developed from basic principles and illustrated by applying it to the simplest possible examples. Thermodynamics, based on the ideal gas thermometer, is related to Gibb's statistical mechanics through the use of Nosé-Hoover heat reservoirs. These reservoirs use integral feedback to control temperature. The same approach is carried through to the simulation and analysis of nonequilibrium mass, momentum, and energy flows. Such a unified approach makes possible consistent mechanical definitions of temperature, stress, and heat flux which lead to a microscopic demonstration of the Second Law of Thermodynamics directly from mechanics. The intimate connection linking Lyapunov-unstable microscopic motions to macroscopic dissipative flows through multifractal phase-space structures is illustrated with many examples from the recent literature. The book is well-suited for undergraduate courses in advanced thermodynamics, statistical mechanic and transport theory, and graduate courses in physics and chemistry.

Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes

Author : Aleksand Janicki,A. Weron
Publisher : CRC Press
Page : 378 pages
File Size : 49,8 Mb
Release : 2021-07-29
Category : Mathematics
ISBN : 9781000447804

Get Book

Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes by Aleksand Janicki,A. Weron Pdf

Presents new computer methods in approximation, simulation, and visualization for a host of alpha-stable stochastic processes.

Chaos Theory

Author : Christos H. Skiadas,Ioannis Dimotikalis
Publisher : World Scientific
Page : 467 pages
File Size : 46,8 Mb
Release : 2011
Category : Science
ISBN : 9789814350334

Get Book

Chaos Theory by Christos H. Skiadas,Ioannis Dimotikalis Pdf

The work done in chaotic modeling and simulation during the last decades has changed our views of the world around us and has introduced new scientific tools, methods and techniques. Advanced topics of these achievements are included in this volume on Chaos Theory which focuses on Chaotic Modeling, Simulation and Applications of the nonlinear phenomena. This volume includes the best papers presented in the 3rd International Conference on CHAOS. This interdisciplinary conference attracted people from many scientific fields dealing with chaos, nonlinear dynamics, fractals and the works presented and the papers included here are of particular interest that could provide a broad understanding of chaos in its various forms. The chapters relate to many fields of chaos including Dynamical and Nonlinear Systems, Attractors and Fractals. Hydro-Fluid Dynamics and Mechanics, Chaos in Meteorology and Cosmology, Chaos in Biology and Genetics, Chaotic Control, Chaos in Economy and Markets, and Computer Composition and Chaotic Simulations, including related applications, are presented.

Chaos and Gauge Field Theory

Author : T S Biró,S G Matinyan,B Müller
Publisher : World Scientific
Page : 300 pages
File Size : 43,6 Mb
Release : 1995-03-07
Category : Science
ISBN : 9789814501156

Get Book

Chaos and Gauge Field Theory by T S Biró,S G Matinyan,B Müller Pdf

This book introduces a rapidly growing new research area — the study of dynamical properties of elementary fields. The methods used in this field range from algebraic topology to parallel computer programming. The main aim of this research is to understand the behavior of elementary particles and fields under extreme circumstances, first of all at high temperature and energy density generated in the largest accelerators of the world and supposed to be present in the early evolution of our Universe shortly after the Big Bang. In particular, chaos is rediscovered in a new appearance in these studies: in gauge theories the well-known divergence of initially adjacent phase space trajectories leads over into a quasi-thermal distribution of energy with a saturated average distance of different field configurations. This particular behavior is due to the compactness of the gauge group. Generally this book is divided into two main parts: the first part mainly deals with the “classical” discovery of chaos in gauge field theory while the second part presents methods and research achievements in recent years. One chapter is devoted entirely to the presentation and discussion of computational problems. The major theme, returning again and again throughout the book, is of course the phenomenon with a thousand faces — chaos itself. This book is intended to be a research book which introduces the reader to a new research field, presenting the basic new ideas in detail but just briefly touching on the problems of other related fields, like perturbative or lattice gauge theory, or dissipative chaos. The terminology of these related fields are, however, used. Exercises are also included in this book. They deepen the reader's understanding of special issues and at the same time offer more information on related problems. For the convenience of the fast reader, solutions are presented right after the problems. Contents:IntroductionChaotic DynamicsChaos in Gauge TheoryTopological Field TheoriesLattice Gauge TheoryHamiltonian Lattice Gauge TheoryComputing SU(2) Gauge TheoryChaos in Lattice Gauge TheoryApplications and ExtensionsBeyond the Classical TheoryChaos and Confinement Readership: Nonlinear scientists, high energy physicists, mathematicians and engineers. keywords:Non-Abelian Gauge Fields;Periodic Orbits;Lyapunov Exponents;Classical and Quantum Yang–Mills Mechanics;Higgs Mechanism;Self-Thermalization via Chaos;Chaos and Confinement;Quark-Gluon Plasma;Lattice Gauge Theory;Monte Carlo Methods;Physics;Field Theory;Chaos;Gauge;Lattice;Thermalization;Entropy;Computing “This book is a good place to approach the research area of chaos applied to gauge field theories.” Mathematical Reviews