Transition Prediction And Control In Subsonic Flow Over A Hump

Transition Prediction And Control In Subsonic Flow Over A Hump Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Transition Prediction And Control In Subsonic Flow Over A Hump book. This book definitely worth reading, it is an incredibly well-written.

Transition Prediction and Control in Subsonic Flow Over a Hump

Author : National Aeronautics and Space Adm Nasa
Publisher : Unknown
Page : 62 pages
File Size : 46,9 Mb
Release : 2018-11
Category : Electronic
ISBN : 1730731007

Get Book

Transition Prediction and Control in Subsonic Flow Over a Hump by National Aeronautics and Space Adm Nasa Pdf

The influence of a surface roughness element in the form of a two-dimensional hump on the transition location in a two-dimensional subsonic flow with a free-stream Mach number up to 0.8 is evaluated. Linear stability theory, coupled with the N-factor transition criterion, is used in the evaluation. The mean flow over the hump is calculated by solving the interacting boundary-layer equations; the viscous-inviscid coupling is taken into consideration, and the flow is solved within the separation bubble. The effects of hump height, length, location, and shape; unit Reynolds number; free-stream Mach number, continuous suction level; location of a suction strip; continuous cooling level; and location of a heating strip on the transition location are evaluated. The N-factor criterion predictions agree well with the experimental correlation of Fage; in addition, the N-factor criterion is more general and powerful than experimental correlations. The theoretically predicted effects of the hump's parameters and flow conditions on transition location are consistent and in agreement with both wind-tunnel and flight observations. Masad, Jamal A. and Iyer, Venkit Unspecified Center...

Advances in Computation, Modeling and Control of Transitional and Turbulent Flows

Author : Tapan K Sengupta,Sanjiva K Lele,Katepalli R Sreenivasan,Peter A Davidson
Publisher : World Scientific
Page : 470 pages
File Size : 44,6 Mb
Release : 2015-12-01
Category : Technology & Engineering
ISBN : 9789814635172

Get Book

Advances in Computation, Modeling and Control of Transitional and Turbulent Flows by Tapan K Sengupta,Sanjiva K Lele,Katepalli R Sreenivasan,Peter A Davidson Pdf

' The role of high performance computing in current research on transitional and turbulent flows is undoubtedly very important. This review volume provides a good platform for leading experts and researchers in various fields of fluid mechanics dealing with transitional and turbulent flows to synergistically exchange ideas and present the state of the art in the fields. Contributed by eminent researchers, the book chapters feature keynote lectures, panel discussions and the best invited contributed papers. Contents:Keynote Speakers:Large-Eddy Simulation of the Navier-Stokes Equations: Deconvolution, Particle Methods, and Super-Resolution (A Leonard)Convective Transport in the Sun (S M Hanasoge, L Gizon, K R Sreenivasan)Rapidly-Rotating Turbulence and its Role in Planetary Dynamos (P A Davidson)Low-Order Models for Control of Fluids: Balanced Models and the Koopman Operator(C W Rowley)Contributed Papers:Different Routes of Transition by Spatio-Temporal Wave-Front (S Bhaumik, T K Sengupta, V Mudkavi)Bypass Transitional Flow Past an Aerofoil With and Without Surface Roughness Elements (Y G Bhumkar, T W H Sheu, T K Sengupta)Global Stability and Transition to Intermittent Chaos in the Cubical Lid-Driven Cavity Flow Problem (J-Ch Loiseau, J-Ch Robinet, E Leriche)Spatio-Temporal Wave Front — Essential Element of Flow Transition for Low Amplitude Excitations (A Mulloth, P Suchandra, T K Sengupta)Simulations Using Transition Models within the Framework of RANS (Y C Manu, A Rajesh, M B Subrahmanya, D S Kulkarni, B N Rajan)DNS of Incompressible Square Duct Flow and Its Receptivity to Free Stream Turbulence (P M Bagade, N Sawant, M Sriramkrishnan, T K Sengupta)Evolution of RANS Modelling of High Speed Mixing Layers using LES (A S Iyer, N K S Rajan, D Chakraborthy)Numerical Investigation of Centrifugal Instability Around a Circular Cylinder Rotated Impulsively (A M Prabhu, R K Shukla, J H Arakeri)Direct Numerical Simulations of Riblets in a Fully-Developed Turbulent Channel Flow: Effects of Geometry (J H Ng, R K Jaiman, T T Lim)Computational Studies on Flow Separation Controls at Relatively Low Reynolds Number Regime (K Fujii)Frequency Dependent Capacitance SDBD Plasma Model for Flow Control (P M Bagade, T K Sengupta, S Sengupta, H D Vo)Effects of Uniform Blowing or Suction on the Amplitude Modulation in Spatially Developing Turbulent Boundary Layers (Y Kametani, R Örlü, P Schlatter, K Fukagata)Turbulent Drag Reduction in Channel Flow Using Weak-Pressure Forcing (B A Khan, M F Baig)Drifting of Internal Gravity Wave in a Non-Boussinesq Stably Stratified Turbulent Channel Flow (S M Yahya, S Sanghi, S F Anwer)Numerical Study of Sink Flow Turbulent Boundary Layers (S S Patwardhan, O N Ramesh)Coherent Structure in Oil Body Embedded in Compound Vortex (T O Chaplina, Yu D Chashechkin)Quantitative Characterization of Single Orifice Hydraulic Flat Spray Nozzle (D M Sharma, W T Lai)Shell Model for Buoyancy-Driven Turbulent Flows (A Kumar, M K Verma)Numerical Simulations in Low–Prandtl Number Convection (J D Scheel, J Schumacher)Effect of Buoyancy on Turbulent Mixed Convection Flow Through Vertical and Horizontal Channels (N Satish, K Venkatasubbaiah, R Harish)Computation of Boundary Layer Flow over Porous Laminated Flat Plate (K A Nair, A Sameen, S A Lal)Boundary Condition Development for an Adverse Pressure Gradient Turbulent Boundary Layer at the Verge of Separation (V Kitsios, C Atkinson, J A Sillero, G Borrell, A G Gungor, J Jiménez, J Soria)Some Interesting Features of Flow Past Slotted Circular Cylinder at Re = 3500 (G K Suryanarayana, V Y Mudkavi, R Kurade, K M Naveen)A High-Resolution Compressible DNS Study of Flow Past a Low-Pressure Gas Turbine Blade (R Ranjan, S M Deshpande, R Narasimha)Numerical Simulation of Impulsive Supersonic Flow from an Open End of a Shock Tube: A Comparative Study (T Murugan, S De, V Thiagarajan)Green''s Function Analysis of Pressure-Strain Correlations in a Supersonic Pipe, Nozzle and Diffuser (S Ghosh, R Friedrich)The Structure of Turbulence in Poiseuille and Couette Flow at Computationally High Reynolds Number (S Pirozzoli, M Bernardini, P Orlandi)A New Reynolds Stress Damping Function for Hybrid RANS/LES with an Evolved Functional Form (J Weatheritt, R D Sandberg)Direct Numerical and Large Eddy Simulations of Helicity-Induced Stably Stratified Turbulent Flows (A Rahimi, A J Chandy)Comparison of RANS and DNS for Transitional Flow Over WTEA-TE1 Airfoil (P M Bagade, É Laurendeau, A Bhole, N Sharma, T K Sengupta)Extracting Coherent Structures to Explore the Minimum Jet Noise (Z Fu, A Agarwal, A V G Cavalieri, P Jordan)Synchronized Large-Eddy Simulations for Sound Generation Analysis (S Unnikrishnan, D V Gaitonde)DNS of a Turbulent Jet Issuing from an Acoustically Lined Pipe (R D Sandberg, B J Tester)Decomposition of Radiating and Non-Radiating Linear Fluctuating Components in Compressible Flows (P Stegeman, A Ooi, J Soria)Toward Control of Compressible Shear Flows: Investigation of Possible Flow Mechanisms (G Kumar, R Bertsch, V Venugopal, S S Girimaji)Damping Numerical Oscillations in Hybrid Solvers through Detection of Gibbs Phenomenon (V K Chakravarthy, D Chakraborty)Forward and Inverse 3D Fourier Transforms of a DNS Wavepacket Evolving in a Blasius Boundary Layer (K-L Kang, K S Yeo)Reduced Order Modeling by POD of Supercritical Flow Past Circular Cylinder (M K Parvathi, S Ijlal, G Pallavi, T K Sengupta)Proper Orthogonal Decomposition vs. Fourier Analysis for Extraction of Large-Scale Structures of Thermal Convection (S Paul, M K Verma)Energy Spectrum and Flux of Buoyancy-Driven Turbulence (M K Verma, A Kumar, A G Chatterjee)DNS of a Buoyant Turbulent Cloud under Rapid Rotation (A Ranjan, P A Davidson)Numerical Simulation of Shock-Bubble Interaction using High Order Upwind Schemes (A Kundu, S De)Rayleigh-Taylor Instability of a Miscible Fluid at the Interface: Direct Numerical Simulation (A Bhole, S Sengupta, A Sengupta, K S Shruti, N Sharma)A High Resolution Differential Filter for Large Eddy Simulation on Unstructured Grids for High-Order Methods (M Najafiyazdi, S Nadarajah, L Mongeau)A Critical Assessment of Simulations for Transitional and Turbulent Flows (T K Sengupta)Panel Discussion Readership: Researchers, professionals, academics, graduate and senior undergraduates in aerospace engineering, mechanical engineering, engineering mechanics, geophysics and fluid mechanics. Keywords:HPC;Transition;Turbulence;Flow Control;Turbulence Modelling'

Fundamentals of Fluid Mechanics

Author : Joseph A. Schetz,Allen E. Fuhs
Publisher : John Wiley & Sons
Page : 968 pages
File Size : 47,8 Mb
Release : 1999
Category : Science
ISBN : 0471348562

Get Book

Fundamentals of Fluid Mechanics by Joseph A. Schetz,Allen E. Fuhs Pdf

Basic fluid dynamic theory and applications in a single, authoritative reference The growing capabilities of computational fluid dynamics and the development of laser velocimeters and other new instrumentation have made a thorough understanding of classic fluid theory and laws more critical today than ever before. Fundamentals of Fluid Mechanics is a vital repository of essential information on this crucial subject. It brings together the contributions of recognized experts from around the world to cover all of the concepts of classical fluid mechanics-from the basic properties of liquids through thermodynamics, flow theory, and gas dynamics. With answers for the practicing engineer and real-world insights for the student, it includes applications from the mechanical, civil, aerospace, chemical, and other fields. Whether used as a refresher or for first-time learning, Fundamentals of Fluid Mechanics is an important new asset for engineers and students in many different disciplines.

IUTAM Laminar-Turbulent Transition

Author : Spencer Sherwin,Peter Schmid,Xuesong Wu
Publisher : Springer Nature
Page : 809 pages
File Size : 53,9 Mb
Release : 2021-07-30
Category : Computers
ISBN : 9783030679026

Get Book

IUTAM Laminar-Turbulent Transition by Spencer Sherwin,Peter Schmid,Xuesong Wu Pdf

This volume comprises the carefully revised papers of the 9th IUTAM Symposium on Laminar-Turbulent Transition, held at the Imperial College, London, UK, in September 2019. The papers focus on the leading research in understanding transition to turbulence, which is a challenging topic of fluid mechanics and arises in many modern technologies as well as in nature. The proceedings are of interest for researchers in fluid mechanics and industry who have to handle these types of problems, such as in the aeronautical sector.

The Origin of Turbulence in Near-Wall Flows

Author : A.V. Boiko,Genrih R. Grek,A.V. Dovgal,Victor V. Kozlov
Publisher : Springer Science & Business Media
Page : 273 pages
File Size : 51,9 Mb
Release : 2013-03-09
Category : Technology & Engineering
ISBN : 9783662047651

Get Book

The Origin of Turbulence in Near-Wall Flows by A.V. Boiko,Genrih R. Grek,A.V. Dovgal,Victor V. Kozlov Pdf

The Origin of Species Charles Darwin The origin of turbulence in fluids is a long-standing problem and has been the focus of research for decades due to its great importance in a variety of engineering applications. Furthermore, the study of the origin of turbulence is part of the fundamental physical problem of turbulence description and the philosophical problem of determinism and chaos. At the end of the nineteenth century, Reynolds and Rayleigh conjectured that the reason of the transition of laminar flow to the 'sinuous' state is in stability which results in amplification of wavy disturbances and breakdown of the laminar regime. Heisenberg (1924) was the founder of linear hydrody namic stability theory. The first calculations of boundary layer stability were fulfilled in pioneer works of Tollmien (1929) and Schlichting (1932, 1933). Later Taylor (1936) hypothesized that the transition to turbulence is initi ated by free-stream oscillations inducing local separations near wall. Up to the 1940s, skepticism of the stability theory predominated, in particular due to the experimental results of Dryden (1934, 1936). Only the experiments of Schubauer and Skramstad (1948) revealed the determining role of insta bility waves in the transition. Now it is well established that the transition to turbulence in shear flows at small and moderate levels of environmental disturbances occurs through development of instability waves in the initial laminar flow. In Chapter 1 we start with the fundamentals of stability theory, employing results of the early studies and recent advances.

Laminar-Turbulent Transition

Author : H.F. Fasel,W.S. Saric
Publisher : Springer Science & Business Media
Page : 730 pages
File Size : 40,7 Mb
Release : 2000-10-18
Category : Science
ISBN : 3540679472

Get Book

Laminar-Turbulent Transition by H.F. Fasel,W.S. Saric Pdf

The origins of turbulent flow and the transition from laminar to turbulent flow are among the most important unsolved problems of fluid mechanics and aerodynamics. Besides being a fundamental question of fluid mechanics, there are many practical applications for information regarding transition location and the details of the subsequent turbulent flow. This proceedings volume contains the papers of two keynote lectures as well as of 104 technical presentations and posters that were presented at the IUTAM Symposium on Laminar-Turbulent Transition in Sedona, Arizona, September 13-17, 1999. The papers published in the present volume document the state of the art in transition research, and therefore, increased emphasis on the various topics covered in this meeting can be expected in the future.

Physics of Transitional Shear Flows

Author : Andrey V. Boiko,Alexander V. Dovgal,Genrih R. Grek,Victor V. Kozlov
Publisher : Springer Science & Business Media
Page : 286 pages
File Size : 40,9 Mb
Release : 2011-09-15
Category : Science
ISBN : 9789400724983

Get Book

Physics of Transitional Shear Flows by Andrey V. Boiko,Alexander V. Dovgal,Genrih R. Grek,Victor V. Kozlov Pdf

Starting from fundamentals of classical stability theory, an overview is given of the transition phenomena in subsonic, wall-bounded shear flows. At first, the consideration focuses on elementary small-amplitude velocity perturbations of laminar shear layers, i.e. instability waves, in the simplest canonical configurations of a plane channel flow and a flat-plate boundary layer. Then the linear stability problem is expanded to include the effects of pressure gradients, flow curvature, boundary-layer separation, wall compliance, etc. related to applications. Beyond the amplification of instability waves is the non-modal growth of local stationary and non-stationary shear flow perturbations which are discussed as well. The volume continues with the key aspect of the transition process, that is, receptivity of convectively unstable shear layers to external perturbations, summarizing main paths of the excitation of laminar flow disturbances. The remainder of the book addresses the instability phenomena found at late stages of transition. These include secondary instabilities and nonlinear features of boundary-layer perturbations that lead to the final breakdown to turbulence. Thus, the reader is provided with a step-by-step approach that covers the milestones and recent advances in the laminar-turbulent transition. Special aspects of instability and transition are discussed through the book and are intended for research scientists, while the main target of the book is the student in the fundamentals of fluid mechanics. Computational guides, recommended exercises, and PowerPoint multimedia notes based on results of real scientific experiments supplement the monograph. These are especially helpful for the neophyte to obtain a solid foundation in hydrodynamic stability. To access the supplementary material go to extras.springer.com and type in the ISBN for this volume.

Parallel Computational Fluid Dynamics 2003

Author : Boris Chetverushkin,Jacques Periaux,N. Satofuka,A. Ecer
Publisher : Elsevier
Page : 558 pages
File Size : 55,8 Mb
Release : 2004-05-06
Category : Mathematics
ISBN : 9780080473673

Get Book

Parallel Computational Fluid Dynamics 2003 by Boris Chetverushkin,Jacques Periaux,N. Satofuka,A. Ecer Pdf

The book is devoted to using of parallel multiprocessor computer systems for numerical simulation of the problems which can be described by the equations of continuum mechanics. Parallel algorithms and software, the problems of meta-computing are discussed in details, some results of high performance simulation of modern gas dynamic problems, combustion phenomena, plasma physics etc are presented. · Parallel Algorithms for Multidisciplinary Studies

NASA Technical Memorandum

Author : Anonim
Publisher : Unknown
Page : 182 pages
File Size : 42,9 Mb
Release : 1963
Category : Aeronautics
ISBN : STANFORD:36105024739463

Get Book

NASA Technical Memorandum by Anonim Pdf

Computational Fluid Dynamics Review 1998 (In 2 Volumes)

Author : Hafez Mohamed M,Oshima Koichhi
Publisher : World Scientific
Page : 1160 pages
File Size : 45,7 Mb
Release : 1998-11-20
Category : Science
ISBN : 9789814495776

Get Book

Computational Fluid Dynamics Review 1998 (In 2 Volumes) by Hafez Mohamed M,Oshima Koichhi Pdf

The first volume of CFD Review was published in 1995. The purpose of this new publication is to present comprehensive surveys and review articles which provide up-to-date information about recent progress in computational fluid dynamics, on a regular basis. Because of the multidisciplinary nature of CFD, it is difficult to cope with all the important developments in related areas. There are at least ten regular international conferences dealing with different aspects of CFD.It is a real challenge to keep up with all these activities and to be aware of essential and fundamental contributions in these areas. It is hoped that CFD Review will help in this regard by covering the state-of-the-art in this field.The present book contains sixty-two articles written by authors from the US, Europe, Japan and China, covering the main aspects of CFD. There are five sections: general topics, numerical methods, flow physics, interdisciplinary applications, parallel computation and flow visualization. The section on numerical methods includes grids, schemes and solvers, while that on flow physics includes incompressible and compressible flows, hypersonics and gas kinetics as well as transition and turbulence. This book should be useful to all researchers in this fast-developing field.