Visualizing Quantum Mechanics With Python

Visualizing Quantum Mechanics With Python Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Visualizing Quantum Mechanics With Python book. This book definitely worth reading, it is an incredibly well-written.

Visualizing Quantum Mechanics with Python

Author : Steve Spicklemire
Publisher : CRC Press
Page : 79 pages
File Size : 42,8 Mb
Release : 2024-06-05
Category : Science
ISBN : 9781040030097

Get Book

Visualizing Quantum Mechanics with Python by Steve Spicklemire Pdf

Quantum Mechanics can be an abstract and complex subject. Students often complain of confusion, struggle, and frustration as they try to master the topic. The goal of this book is to reduce the complexity and clarify the abstractions with concrete visual examples driven by simple python programs. It is assumed that the reader is concurrently taking a course in quantum mechanics, or self-studying quantum mechanics, but is looking for supplementary material to help with understanding and visualizing how quantum mechanics works. The focus of this book is writing python programs to visualize the underlying behavior of the mathematical theory. The background needed to understand quantum mechanics is differential equations, linear algebra and modern physics. We need a strong foundation in differential equations and linear algebra because the behavior of quantum systems is governed by equations that are written in terms of these concepts. Modern physics includes concepts such as special relativity and quantum phenomena like the photoelectric effect and energy quantization that the theory of quantum mechanics seeks to explain. This book is also not an introduction to the python programming language, or to numpy, or even to VPython. However its programming examples start simply and grow more complex as the chapters progress, so deep expertise in any of these is not a pre-requisite. Key features: · Provides an accessible and practical guide to the abstractions in quantum mechanics with concrete visual examples driven by simple python programs. · Contains few derivations, equations, and proofs. · For complete beginners of python programming, appendix B serves as a very brief introduction to the main concepts needed to understand the code in this book. Dr. Stephen Spicklemire is Associate Professor of Physics at the University of Indianapolis, USA. He has been teaching physics at the University of Indianapolis for more than 30 years. From the implementation of "flipped" physics class to the modernization of scientific computing and laboratory instrumentation courses, he has brought the strengths of his background in physics, engineering and computer science into the classroom. Dr. Spicklemire also does IT and engineering consulting. He is an active participant in several national research initiatives relating to improving physics education. These range from improving materials to help students prepare for class, to supporting students success through standards based grading. He is an active developer of the VPython and WebVPython projects and a contributor to the Matter and Interactions textbook.

Visualizing Quantum Mechanics with Python

Author : Steve Spicklemire
Publisher : CRC Press
Page : 63 pages
File Size : 40,7 Mb
Release : 2024-06-05
Category : Science
ISBN : 9781040030073

Get Book

Visualizing Quantum Mechanics with Python by Steve Spicklemire Pdf

Quantum Mechanics can be an abstract and complex subject. Students often complain of confusion, struggle, and frustration as they try to master the topic. The goal of this book is to reduce the complexity and clarify the abstractions with concrete visual examples driven by simple python programs. It is assumed that the reader is concurrently taking a course in quantum mechanics, or self-studying quantum mechanics, but is looking for supplementary material to help with understanding and visualizing how quantum mechanics works. The focus of this book is writing python programs to visualize the underlying behavior of the mathematical theory. The background needed to understand quantum mechanics is differential equations, linear algebra and modern physics. We need a strong foundation in differential equations and linear algebra because the behavior of quantum systems is governed by equations that are written in terms of these concepts. Modern physics includes concepts such as special relativity and quantum phenomena like the photoelectric effect and energy quantization that the theory of quantum mechanics seeks to explain. This book is also not an introduction to the python programming language, or to numpy, or even to VPython. However its programming examples start simply and grow more complex as the chapters progress, so deep expertise in any of these is not a pre-requisite. Key features: · Provides an accessible and practical guide to the abstractions in quantum mechanics with concrete visual examples driven by simple python programs. · Contains few derivations, equations, and proofs. · For complete beginners of python programming, appendix B serves as a very brief introduction to the main concepts needed to understand the code in this book. Dr. Stephen Spicklemire is Associate Professor of Physics at the University of Indianapolis, USA. He has been teaching physics at the University of Indianapolis for more than 30 years. From the implementation of "flipped" physics class to the modernization of scientific computing and laboratory instrumentation courses, he has brought the strengths of his background in physics, engineering and computer science into the classroom. Dr. Spicklemire also does IT and engineering consulting. He is an active participant in several national research initiatives relating to improving physics education. These range from improving materials to help students prepare for class, to supporting students success through standards based grading. He is an active developer of the VPython and WebVPython projects and a contributor to the Matter and Interactions textbook.

Computational Modeling and Visualization of Physical Systems with Python

Author : Jay Wang
Publisher : John Wiley & Sons
Page : 986 pages
File Size : 44,5 Mb
Release : 2015-12-21
Category : Science
ISBN : 9781119239888

Get Book

Computational Modeling and Visualization of Physical Systems with Python by Jay Wang Pdf

Computational Modeling, by Jay Wang introduces computational modeling and visualization of physical systems that are commonly found in physics and related areas. The authors begin with a framework that integrates model building, algorithm development, and data visualization for problem solving via scientific computing. Through carefully selected problems, methods, and projects, the reader is guided to learning and discovery by actively doing rather than just knowing physics.

Introduction To Time-dependent Quantum Mechanics With Python

Author : Atanu Bhattacharya,Elliot R Bernstein
Publisher : World Scientific
Page : 345 pages
File Size : 53,5 Mb
Release : 2023-10-18
Category : Science
ISBN : 9789811277184

Get Book

Introduction To Time-dependent Quantum Mechanics With Python by Atanu Bhattacharya,Elliot R Bernstein Pdf

Computational spectroscopy and computational quantum chemical dynamics is a vast field in physical chemistry. Significant part of this field is developed based on the concepts of time-dependent quantum mechanics and its numerical implementations.This book gives an introduction to the Time-Dependent Quantum Chemistry for use with any introductory college/university course in optics, spectroscopy, kinetics, dynamics, or experimental physical chemistry or chemical physics of the kind usually taken by undergraduate and graduate students in physical chemistry. In this book, different concepts of time-dependent quantum mechanics are systematically presented by first giving emphasis on the contrasting viewpoint of classical and quantum mechanical motion of a particle, then by demonstrating the ways to find classical flavour in quantum dynamics, thereafter by formally defining the wavepacket which represents a quantum particle and finally by demonstrating numerical methods to explore the wavepacket dynamics in one dimension. Along with the analytical theory, accompanying Python chapters in this book take readers to a hands-on tour with Python programming by first giving them a quick introduction to the Python programming, then by introducing the position-space grid representation of the wavefunction, thereafter, by making them familiarized with the Fourier transform to represent the discretized wavefunction in momentum space, subsequently by showing the Python-based methodologies to express Hamiltonian operator in matrix form and finally by demonstrating the entire Python program which solves the wavepacket dynamics in one dimension under influence of time-independent Hamiltonian following split-operator approach.Rigorous class-testing of the presented lecture notes at the Indian Institute of Science, GITAM University and at NPTEL platform reveals that physical chemistry students, after thoroughly going through all chapters, not only develop an in-depth understanding of the wavepacket dynamics and its numerical implementations, but also start successfully writing their own Python code for solving any one dimensional wavepacket dynamics problem.

Introduction to Computation in Physical Sciences

Author : Jay Wang,Adam Wang
Publisher : Springer Nature
Page : 264 pages
File Size : 40,6 Mb
Release : 2023-01-25
Category : Computers
ISBN : 9783031176463

Get Book

Introduction to Computation in Physical Sciences by Jay Wang,Adam Wang Pdf

This book provides a practical and comprehensive introduction to computational problem solving from the viewpoints of practitioners in both academic and industrial worlds. The authors present scientific problem-solving using computation and aim to increase computational thinking, which is the mindset and skillset required to solve scientific problems with computational methodologies via model building, simulation, data analysis, and visualization using the Python programming language. Topics and examples span fundamental areas of physical science as well as contemporary topics including quantum computing, neural networks, machine learning, global warming, and energy balance. The book features unique and innovative techniques and practices including: intentional scaffolding to help beginners learn computational problem solving; multimodal computing environments including cloud-based platforms and just-in-time computing; emphasis and connection between both numerical and symbolic computations; and extensive exercise sets carefully designed for further exploration as project assignments or self-paced study. The book is suitable for introductory level readers in physical sciences, engineering, and related STEM disciplines. Specifically, the book is appropriate for use in either a standalone course on computation and modeling and as a resource for readers interested in learning about proven techniques in interactive computing.

Data Visualization with Python and JavaScript

Author : Kyran Dale
Publisher : "O'Reilly Media, Inc."
Page : 555 pages
File Size : 45,5 Mb
Release : 2022-12-07
Category : Computers
ISBN : 9781098111823

Get Book

Data Visualization with Python and JavaScript by Kyran Dale Pdf

How do you turn raw, unprocessed, or malformed data into dynamic, interactive web visualizations? In this practical book, author Kyran Dale shows data scientists and analysts--as well as Python and JavaScript developers--how to create the ideal toolchain for the job. By providing engaging examples and stressing hard-earned best practices, this guide teaches you how to leverage the power of best-of-breed Python and JavaScript libraries. Python provides accessible, powerful, and mature libraries for scraping, cleaning, and processing data. And while JavaScript is the best language when it comes to programming web visualizations, its data processing abilities can't compare with Python's. Together, these two languages are a perfect complement for creating a modern web-visualization toolchain. This book gets you started. You'll learn how to: Obtain data you need programmatically, using scraping tools or web APIs: Requests, Scrapy, Beautiful Soup Clean and process data using Python's heavyweight data processing libraries within the NumPy ecosystem: Jupyter notebooks with pandas+Matplotlib+Seaborn Deliver the data to a browser with static files or by using Flask, the lightweight Python server, and a RESTful API Pick up enough web development skills (HTML, CSS, JS) to get your visualized data on the web Use the data you've mined and refined to create web charts and visualizations with Plotly, D3, Leaflet, and other libraries

Statistics and Data Visualization in Climate Science with R and Python

Author : Samuel S. P. Shen,Gerald R. North
Publisher : Cambridge University Press
Page : 415 pages
File Size : 48,6 Mb
Release : 2023-11-30
Category : Science
ISBN : 9781108905275

Get Book

Statistics and Data Visualization in Climate Science with R and Python by Samuel S. P. Shen,Gerald R. North Pdf

A comprehensive overview of essential statistical concepts, useful statistical methods, data visualization, and modern computing tools for the climate sciences and many others such as geography and environmental engineering. It is an invaluable reference for students and researchers in climatology and its connected fields who wish to learn data science, statistics, R and Python programming. The examples and exercises in the book empower readers to work on real climate data from station observations, remote sensing and simulated results. For example, students can use R or Python code to read and plot the global warming data and the global precipitation data in netCDF, csv, txt, or JSON; and compute and interpret empirical orthogonal functions. The book's computer code and real-world data allow readers to fully utilize the modern computing technology and updated datasets. Online supplementary resources include R code and Python code, data files, figure files, tutorials, slides and sample syllabi.

Python 3 Data Visualization Using Chatgpt / Gpt-4

Author : Oswald Campesato
Publisher : Walter de Gruyter GmbH & Co KG
Page : 314 pages
File Size : 41,9 Mb
Release : 2023-12-12
Category : Art
ISBN : 9781501518805

Get Book

Python 3 Data Visualization Using Chatgpt / Gpt-4 by Oswald Campesato Pdf

This book is designed to show readers the concepts of Python 3 programming and the art of data visualization. It also explores cutting-edge techniques using ChatGPT/GPT-4 in harmony with Python for generating visuals that tell more compelling data stories. Chapter 1 introduces the essentials of Python, covering a vast array of topics from basic data types, loops, and functions to more advanced constructs like dictionaries, sets, and matrices. In Chapter 2, the focus shifts to NumPy and its powerful array operations, leading into data visualization using prominent libraries such as Matplotlib. Chapter 6 includes Seaborn's rich visualization tools, offering insights into datasets like Iris and Titanic. Further, the book covers other visualization tools and techniques, including SVG graphics, D3 for dynamic visualizations, and more. Chapter 7 covers information about the main features of ChatGPT and GPT-4, as well as some of their competitors. Chapter 8 contains examples of using ChatGPT in order to perform data visualization, such as charts and graphs that are based on datasets (e.g., the Titanic dataset). Companion files with code, datasets, and figures are available for downloading. From foundational Python concepts to the intricacies of data visualization, this book is ideal for Python practitioners, data scientists, and anyone in the field of data analytics looking to enhance their storytelling with data through visuals. It's also perfect for educators seeking material for teaching advanced data visualization techniques. FEATURES Explores cutting-edge techniques using ChatGPT/GPT-4 in harmony with Python for generating visuals that tell more compelling data stories Contains detailed tutorials that guide you through the creation of complex visuals Tackles actual data scenarios and builds your expertise as you apply learned concepts to real datasets Features data manipulation and cleaning with Pandas to prepare flawless datasets ready for visualization Includes companion files with source code, data sets, and figures

Computational Physics

Author : Mark E. J. Newman
Publisher : Createspace Independent Publishing Platform
Page : 0 pages
File Size : 46,7 Mb
Release : 2013
Category : Computational physics
ISBN : 1480145513

Get Book

Computational Physics by Mark E. J. Newman Pdf

This book explains the fundamentals of computational physics and describes the techniques that every physicist should know, such as finite difference methods, numerical quadrature, and the fast Fourier transform. The book offers a complete introduction to the topic at the undergraduate level, and is also suitable for the advanced student or researcher. The book begins with an introduction to Python, then moves on to a step-by-step description of the techniques of computational physics, with examples ranging from simple mechanics problems to complex calculations in quantum mechanics, electromagnetism, statistical mechanics, and more.

Learn Quantum Computing with Python and IBM Quantum Experience

Author : Robert Loredo
Publisher : Packt Publishing Ltd
Page : 510 pages
File Size : 47,5 Mb
Release : 2020-09-28
Category : Computers
ISBN : 9781838986759

Get Book

Learn Quantum Computing with Python and IBM Quantum Experience by Robert Loredo Pdf

A step-by-step guide to learning the implementation and associated methodologies in quantum computing with the help of the IBM Quantum Experience, Qiskit, and Python that will have you up and running and productive in no time Key FeaturesDetermine the difference between classical computers and quantum computersUnderstand the quantum computational principles such as superposition and entanglement and how they are leveraged on IBM Quantum Experience systemsRun your own quantum experiments and applications by integrating with QiskitBook Description IBM Quantum Experience is a platform that enables developers to learn the basics of quantum computing by allowing them to run experiments on a quantum computing simulator and a real quantum computer. This book will explain the basic principles of quantum mechanics, the principles involved in quantum computing, and the implementation of quantum algorithms and experiments on IBM's quantum processors. You will start working with simple programs that illustrate quantum computing principles and slowly work your way up to more complex programs and algorithms that leverage quantum computing. As you build on your knowledge, you'll understand the functionality of IBM Quantum Experience and the various resources it offers. Furthermore, you'll not only learn the differences between the various quantum computers but also the various simulators available. Later, you'll explore the basics of quantum computing, quantum volume, and a few basic algorithms, all while optimally using the resources available on IBM Quantum Experience. By the end of this book, you'll learn how to build quantum programs on your own and have gained practical quantum computing skills that you can apply to your business. What you will learnExplore quantum computational principles such as superposition and quantum entanglementBecome familiar with the contents and layout of the IBM Quantum ExperienceUnderstand quantum gates and how they operate on qubitsDiscover the quantum information science kit and its elements such as Terra and AerGet to grips with quantum algorithms such as Bell State, Deutsch-Jozsa, Grover's algorithm, and Shor's algorithmHow to create and visualize a quantum circuitWho this book is for This book is for Python developers who are looking to learn quantum computing and put their knowledge to use in practical situations with the help of IBM Quantum Experience. Some background in computer science and high-school-level physics and math is required.

Computational Quantum Mechanics

Author : Joshua Izaac,Jingbo Wang
Publisher : Springer
Page : 494 pages
File Size : 42,8 Mb
Release : 2019-02-15
Category : Science
ISBN : 9783319999302

Get Book

Computational Quantum Mechanics by Joshua Izaac,Jingbo Wang Pdf

Quantum mechanics undergraduate courses mostly focus on systems with known analytical solutions; the finite well, simple Harmonic, and spherical potentials. However, most problems in quantum mechanics cannot be solved analytically. This textbook introduces the numerical techniques required to tackle problems in quantum mechanics, providing numerous examples en route. No programming knowledge is required – an introduction to both Fortran and Python is included, with code examples throughout. With a hands-on approach, numerical techniques covered in this book include differentiation and integration, ordinary and differential equations, linear algebra, and the Fourier transform. By completion of this book, the reader will be armed to solve the Schrödinger equation for arbitrarily complex potentials, and for single and multi-electron systems.

An Object-Oriented Python Cookbook in Quantum Information Theory and Quantum Computing

Author : M.S. Ramkarthik,Pranay Barkataki
Publisher : CRC Press
Page : 270 pages
File Size : 51,5 Mb
Release : 2022-09-30
Category : Computers
ISBN : 9781000626926

Get Book

An Object-Oriented Python Cookbook in Quantum Information Theory and Quantum Computing by M.S. Ramkarthik,Pranay Barkataki Pdf

This first-of-a-kind textbook provides computational tools in state-of-the-art OOPs Python that are fundamental to quantum information, quantum computing, linear algebra and one-dimensional spin half condensed matter systems. Over 104 subroutines are included, and the codes are aided by mathematical comments to enhance clarity. Suitable for beginner and advanced readers alike, students and researchers will find this textbook to be a helpful guide and a compendium which they can readily use. Features Includes over 104 codes in OOPs Python, all of which can be used either as a standalone program or integrated with any other main program without any issues. Every parameter in the input, output and execution has been provided while keeping both beginner and advanced users in mind. The output of every program is explained thoroughly with detailed examples. Detailed mathematical commenting is done alongside the code which enhances clarity about the flow and working of the code.

Computational Problems for Physics

Author : Rubin H. Landau,Manuel José Páez
Publisher : CRC Press
Page : 390 pages
File Size : 50,5 Mb
Release : 2018-05-30
Category : Science
ISBN : 9781351784030

Get Book

Computational Problems for Physics by Rubin H. Landau,Manuel José Páez Pdf

Our future scientists and professionals must be conversant in computational techniques. In order to facilitate integration of computer methods into existing physics courses, this textbook offers a large number of worked examples and problems with fully guided solutions in Python as well as other languages (Mathematica, Java, C, Fortran, and Maple). It’s also intended as a self-study guide for learning how to use computer methods in physics. The authors include an introductory chapter on numerical tools and indication of computational and physics difficulty level for each problem. Readers also benefit from the following features: • Detailed explanations and solutions in various coding languages. • Problems are ranked based on computational and physics difficulty. • Basics of numerical methods covered in an introductory chapter. • Programming guidance via flowcharts and pseudocode. Rubin Landau is a Distinguished Professor Emeritus in the Department of Physics at Oregon State University in Corvallis and a Fellow of the American Physical Society (Division of Computational Physics). Manuel Jose Paez-Mejia is a Professor of Physics at Universidad de Antioquia in Medellín, Colombia.

Computational Physics

Author : Rubin H. Landau,Manuel J. Páez,Cristian C. Bordeianu
Publisher : John Wiley & Sons
Page : 597 pages
File Size : 45,5 Mb
Release : 2024-05-13
Category : Science
ISBN : 9783527414253

Get Book

Computational Physics by Rubin H. Landau,Manuel J. Páez,Cristian C. Bordeianu Pdf

The classic in the field for more than 25 years, now with more emphasis on data science and machine learning Computational physics combines physics, applied mathematics, and computer science in a cutting-edge multidisciplinary approach to solving realistic physical problems. It has become integral to modern physics research because of its capacity to bridge the gap between mathematical theory and real-world system behavior. Computational Physics provides the reader with the essential knowledge to understand computational tools and mathematical methods well enough to be successful. Its philosophy is rooted in “learning by doing”, assisted by many sample programs in the popular Python programming language. The first third of the book lays the fundamentals of scientific computing, including programming basics, stable algorithms for differentiation and integration, and matrix computing. The latter two-thirds of the textbook cover more advanced topics such linear and nonlinear differential equations, chaos and fractals, Fourier analysis, nonlinear dynamics, and finite difference and finite elements methods. A particular focus in on the applications of these methods for solving realistic physical problems. Readers of the fourth edition of Computational Physics will also find: Brand-new chapters on general relativity and the computational physics of soft matter An exceptionally broad range of topics, from simple matrix manipulations to intricate computations in nonlinear dynamics A whole suite of supplementary material: Python programs, Jupyter notebooks and videos Computational Physics is ideal for students in physics, engineering, materials science, and any subjects drawing on applied physics.