Advances In Time Domain Computational Electromagnetic Methods

Advances In Time Domain Computational Electromagnetic Methods Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Advances In Time Domain Computational Electromagnetic Methods book. This book definitely worth reading, it is an incredibly well-written.

Advances in Time-Domain Computational Electromagnetic Methods

Author : Qiang Ren,Su Yan,Atef Z. Elsherbeni
Publisher : John Wiley & Sons
Page : 724 pages
File Size : 50,7 Mb
Release : 2022-11-15
Category : Science
ISBN : 9781119808374

Get Book

Advances in Time-Domain Computational Electromagnetic Methods by Qiang Ren,Su Yan,Atef Z. Elsherbeni Pdf

Discover state-of-the-art time domain electromagnetic modeling and simulation algorithms Advances in Time-Domain Computational Electromagnetic Methods delivers a thorough exploration of recent developments in time domain computational methods for solving complex electromagnetic problems. The book discuses the main time domain computational electromagnetics techniques, including finite-difference time domain (FDTD), finite-element time domain (FETD), discontinuous Galerkin time domain (DGTD), time domain integral equation (TDIE), and other methods in electromagnetic, multiphysics modeling and simulation, and antenna designs. The book bridges the gap between academic research and real engineering applications by comprehensively surveying the full picture of current state-of-the-art time domain electromagnetic simulation techniques. Among other topics, it offers readers discussions of automatic load balancing schemes for DG DG-FETD/SETD methods and convolution quadrature time domain integral equation methods for electromagnetic scattering. Advances in Time-Domain Computational Electromagnetic Methods also includes: Introductions to cylindrical, spherical, and symplectic FDTD, as well as FDTD for metasurfaces with GSTC and FDTD for nonlinear metasurfaces Explorations of FETD for dispersive and nonlinear media and SETD-DDM for periodic/quasi-periodic arrays Discussions of TDIE, including explicit marching-on-in-time solvers for second-kind time domain integral equations, TD-SIE DDM, and convolution quadrature time domain integral equation methods for electromagnetic scattering Treatments of deep learning, including time domain electromagnetic forward and inverse modeling using a differentiable programming platform Ideal for undergraduate and graduate students studying the design and development of various kinds of communication systems, as well as professionals working in these fields, Advances in Time-Domain Computational Electromagnetic Methods is also an invaluable resource for those taking advanced graduate courses in computational electromagnetic methods and simulation techniques.

Advances in Computational Electrodynamics

Author : Allen Taflove
Publisher : Artech House Publishers
Page : 766 pages
File Size : 44,6 Mb
Release : 1998
Category : Diferencias finitas
ISBN : STANFORD:36105023423085

Get Book

Advances in Computational Electrodynamics by Allen Taflove Pdf

Finite-Difference Time-Domain (FD-TD) modeling is arguably the most popular and powerful means available to perform detailed electromagnetic engineering analyses. Edited by the pioneer and foremost authority on the subject, here is the first book to assemble in one resource the latest techniques and results of the leading theoreticians and practitioners of FD-TD computational electromagnetics modeling.

Advanced Computational Electromagnetic Methods

Author : Wenhua Yu,Wenxing Li,Atef Elsherbeni,Yahya Rahmat-Samii
Publisher : Artech House
Page : 600 pages
File Size : 54,7 Mb
Release : 2015-03-01
Category : Technology & Engineering
ISBN : 9781608078974

Get Book

Advanced Computational Electromagnetic Methods by Wenhua Yu,Wenxing Li,Atef Elsherbeni,Yahya Rahmat-Samii Pdf

This new resource covers the latest developments in computational electromagnetic methods, with emphasis on cutting-edge applications. This book is designed to extend existing literature to the latest development in computational electromagnetic methods, which are of interest to readers in both academic and industrial areas. The topics include advanced techniques in MoM, FEM and FDTD, spectral domain method, GPU and Phi hardware acceleration, metamaterials, frequency and time domain integral equations, and statistics methods in bio-electromagnetics.

Advances in Time-Domain Computational Electromagnetic Methods

Author : Qiang Ren,Su Yan,Atef Z. Elsherbeni
Publisher : John Wiley & Sons
Page : 724 pages
File Size : 42,5 Mb
Release : 2022-11-15
Category : Science
ISBN : 9781119808398

Get Book

Advances in Time-Domain Computational Electromagnetic Methods by Qiang Ren,Su Yan,Atef Z. Elsherbeni Pdf

Advances in Time-Domain Computational Electromagnetic Methods Discover state-of-the-art time domain electromagnetic modeling and simulation algorithms Advances in Time-Domain Computational Electromagnetic Methods delivers a thorough exploration of recent developments in time domain computational methods for solving complex electromagnetic problems. The book discusses the main time domain computational electromagnetics techniques, including finite-difference time domain (FDTD), finite-element time domain (FETD), discontinuous Galerkin time domain (DGTD), time domain integral equation (TDIE), and other methods in electromagnetic, multiphysics modeling and simulation, and antenna designs. The book bridges the gap between academic research and real engineering applications by comprehensively surveying the full picture of current state-of-the-art time domain electromagnetic simulation techniques. Among other topics, it offers readers discussions of automatic load balancing schemes for DG-FETD/SETD methods and convolution quadrature time domain integral equation methods for electromagnetic scattering. Advances in Time-Domain Computational Electromagnetic Methods also includes: Introductions to cylindrical, spherical, and symplectic FDTD, as well as FDTD for metasurfaces with GSTC and FDTD for nonlinear metasurfaces Explorations of FETD for dispersive and nonlinear media and SETD-DDM for periodic/ quasi-periodic arrays Discussions of TDIE, including explicit marching-on-in-time solvers for second-kind time domain integral equations, TD-SIE DDM, and convolution quadrature time domain integral equation methods for electromagnetic scattering Treatments of deep learning, including time domain electromagnetic forward and inverse modeling using a differentiable programming platform Ideal for undergraduate and graduate students studying the design and development of various kinds of communication systems, as well as professionals working in these fields, Advances in Time-Domain Computational Electromagnetic Methods is also an invaluable resource for those taking advanced graduate courses in computational electromagnetic methods and simulation techniques.

Time Domain Techniques in Computational Electromagnetics

Author : Dragan Poljak
Publisher : Witpress
Page : 192 pages
File Size : 40,7 Mb
Release : 2004
Category : Science
ISBN : UOM:39015059233166

Get Book

Time Domain Techniques in Computational Electromagnetics by Dragan Poljak Pdf

A state-of-the-art review from invited contributors. Subjects covered include: time domain analysis of electromagnetic wave fields by boundary; integral equation method; and transient analysis of thin wires and related time domain energy measures.

Advanced Computational Electromagnetic Methods

Author : Wenhua Yu
Publisher : Unknown
Page : 597 pages
File Size : 54,7 Mb
Release : 2015
Category : Electromagnetism
ISBN : 1523116935

Get Book

Advanced Computational Electromagnetic Methods by Wenhua Yu Pdf

This new resource covers the latest developments in computational electromagnetic methods, with emphasis on cutting-edge applications. This book is designed to extend existing literature to the latest development in computational electromagnetic methods, which are of interest to readers in both academic and industrial areas. The topics include advanced techniques in MoM, FEM and FDTD, spectral domain method, GPU and Phi hardware acceleration, metamaterials, frequency and time domain integral equations, and statistics methods in bio-electromagnetics.

Essentials of Computational Electromagnetics

Author : Xin-Qing Sheng,Wei Song
Publisher : John Wiley & Sons
Page : 291 pages
File Size : 54,5 Mb
Release : 2012-03-22
Category : Science
ISBN : 9780470829653

Get Book

Essentials of Computational Electromagnetics by Xin-Qing Sheng,Wei Song Pdf

Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results without specifying practical issues, such as how to convert discretized formulations into computer programs, and the numerical characteristics of the computer programs. In this book, the authors elaborate the above three methods in CEM using practical case studies, explaining their own research experiences along with a review of current literature. A full analysis is provided for typical cases, including characteristics of numerical methods, helping beginners to develop a quick and deep understanding of the essentials of CEM. Outlines practical issues, such as how to convert discretized formulations into computer programs Gives typical computer programs and their numerical characteristics along with line by line explanations of programs Uses practical examples from the authors' own work as well as in the current literature Includes exercise problems to give readers a better understanding of the material Introduces the available commercial software and their limitations This book is intended for graduate-level students in antennas and propagation, microwaves, microelectronics, and electromagnetics. This text can also be used by researchers in electrical and electronic engineering, and software developers interested in writing their own code or understanding the detailed workings of code. Companion website for the book: www.wiley.com/go/sheng/cem

Advanced FDTD Methods

Author : Wenhua Yu
Publisher : Artech House
Page : 267 pages
File Size : 42,6 Mb
Release : 2011
Category : Mathematics
ISBN : 9781608071777

Get Book

Advanced FDTD Methods by Wenhua Yu Pdf

Advanced FDTD Methods: Parallelization, Acceleration, and Engineering Applications -- Contents -- Preface -- Chapter 1 Computational Electromagnetic Methods -- 1.1 FDTD METHOD -- 1.1.1 FDTD Update Equations -- 1.1.2 Stability Analysis -- 1.1.3 Boundary Conditions -- 1.2 METHOD OF MOMENTS -- 1.3 FINITE ELEMENT METHOD -- 1.3.1 Scalar Formulation -- 1.3.2 Vector Formulation -- 1.4 FINITE INTEGRATION TECHNIQUE -- References -- Chapter 2 FDTD Optimization and Acceleration -- 2.1 INTRODUCTION TO CPU ARCHITECTURE -- 2.2 SSE INSTRUCTION SET -- 2.3 CACHE OPTIMIZATION -- 2.4 TASK PARALLELIZATION AND BUNDLING -- 2.5 PREFETCH -- 2.6 READING OR WRITING COMBINATION -- 2.7 MATERIAL LOOP-UP TABLE -- 2.8 NUMA OPTIMIZATION -- 2.9 IMPLEMENTATION OF VALU FDTD METHOD -- References -- Chapter 3 Parallel FDTD Method and Systems -- 3.1 PARALLEL FDTD METHOD -- 3.2 OPENMP FOR MULTICORE PROCESSORS -- 3.3 MPI TECHNIQUE -- 3.4 NETWORK CARD, SWITCH, AND CABLE -- References -- Chapter 4 Electromagnetic Simulation Techniques -- 4.1 MESH GENERATION TECHNIQUES -- 4.2 BASIC SIMULATION PROCEDURE -- 4.3 DIPOLE ANTENNA -- 4.4 VIVALDI ANTENNA SIMULATION -- 4.5 BANDED MICROWAVE CONNECTOR -- 4.6 PARALLEL LINES -- 4.7 TWO-PORT ANTENNA -- 4.8 SLOT COUPLING -- 4.9 MICROWAVE FILTER -- 4.10 OPTIMIZATION AND PARAMETER SCAN -- 4.11 PERIODIC STRUCTURE SIMULATION -- 4.12 GROUND PENETRATING RADAR MODEL -- 4.13 MICROWAVE CONNECTOR -- References -- Chapter 5 EM Simulation Software Benchmarks -- 5.1 BASIC STEPS IN EM SIMULATION -- 5.1.1 HFSS -- 5.1.2 CST -- 5.1.3 FEKO -- 5.1.4 GEMS -- 5.2 HARDWARE PLATFORMS -- 5.3 PATCH ANTENNA -- 5.4 VIVALDI ANTENNA -- 5.5 SCATTERING OF DIELECTRIC SPHERE -- 5.6 CELL PHONE ANTENNA -- 5.7 ELECTROMAGNETIC BANDGAP STRUCTURE -- 5.8 STANDARD SAR TEST -- 5.9 WAVEGUIDE FILTER -- References -- Chapter 6 Large Multiscale Problem Solving -- 6.1 RADIO FREQUENCY PROTECTION.

Advances in FDTD Computational Electrodynamics

Author : Allen Taflove,Ardavan Oskooi,Steven G. Johnson
Publisher : Artech House
Page : 640 pages
File Size : 55,6 Mb
Release : 2013
Category : Science
ISBN : 9781608071708

Get Book

Advances in FDTD Computational Electrodynamics by Allen Taflove,Ardavan Oskooi,Steven G. Johnson Pdf

Advances in photonics and nanotechnology have the potential to revolutionize humanitys ability to communicate and compute. To pursue these advances, it is mandatory to understand and properly model interactions of light with materials such as silicon and gold at the nanoscale, i.e., the span of a few tens of atoms laid side by side. These interactions are governed by the fundamental Maxwells equations of classical electrodynamics, supplemented by quantum electrodynamics. This book presents the current state-of-the-art in formulating and implementing computational models of these interactions. Maxwells equations are solved using the finite-difference time-domain (FDTD) technique, pioneered by the senior editor, whose prior Artech House books in this area are among the top ten most-cited in the history of engineering. This cutting-edge resource helps readers understand the latest developments in computational modeling of nanoscale optical microscopy and microchip lithography, as well as nanoscale plasmonics and biophotonics.

Applied Computational Electromagnetics

Author : Nikolaos K. Uzunoglu,Konstantina S. Nikita,Dimitra I. Kaklamani
Publisher : Springer Science & Business Media
Page : 533 pages
File Size : 48,6 Mb
Release : 2012-12-06
Category : Computers
ISBN : 9783642596292

Get Book

Applied Computational Electromagnetics by Nikolaos K. Uzunoglu,Konstantina S. Nikita,Dimitra I. Kaklamani Pdf

@EOI: AEI rEOMETPEI Epigram of the Academy of Plato in Athens Electromagnetism, the science of forces arising from Amber (HAEKTPON) and the stone of Magnesia (MArNHLIA), has been the fOWldation of major scientific breakthroughs, such as Quantum Mechanics and Theory of Relativity, as well as most leading edge technologies of the twentieth century. The accuracy of electromagnetic fields computations for engineering purposes has been significantly improved during the last decades, due to the deVelopment of efficient computational techniques and the availability of high performance computing. The present book is based on the contributions and discussions developed during the NATO Advanced Study Institute on Applied Computational Electromagnetics: State of the Art and Future Trends, which has taken place in Hellas, on the island of Samos, very close to the birthplace of Electromagnetism. The book covers the fundamental concepts, recent developments and advanced applications of Integral Equation and Metliod of Moments Techniques, Finite Element and BOWldary Element Methods, Finite Difference Time Domain and Transmission Line Methods. Furthermore, topics related to Computational Electromagnetics, such as Inverse Scattering, Semi-Analytical Methods and Parallel Processing Techniques are included. The collective presentation of the principal computational electromagnetics techniques, developed to handle diverse challenging leading edge technology problems, is expected to be useful to researchers and postgraduate students working in various topics of electromagnetic technologies.

Advances in Time-Domain Electromagnetic Simulation Capabilities Through the Use of Overset Grids and Massively Parallel Computing

Author : Douglas C. Blake
Publisher : Unknown
Page : 189 pages
File Size : 47,6 Mb
Release : 1997-03-01
Category : Electromagnetic waves
ISBN : 1423567447

Get Book

Advances in Time-Domain Electromagnetic Simulation Capabilities Through the Use of Overset Grids and Massively Parallel Computing by Douglas C. Blake Pdf

A new methodology is presented for conducting numerical simulations of electromagnetic scattering and wave propagation phenomena. Technologies from several scientific disciplines, including computational fluid dynamics, computational electromagnetics, and parallel computing, are uniquely combined to form a simulation capability that is both versatile and practical. In the process of creating this capability, work is accomplished to conduct the first study designed to quantify the effects of domain decomposition on the performance of a class of explicit hyperbolic partial differential equations solvers; to develop a new method of partitioning computational domains comprised of overset grids; and to provide the first detailed assessment of the applicability of overset grids to the field of computational electromagnetics. Furthermore, the first Finite Volume Time Domain (FVTD) algorithm capable of utilizing overset grids on massively parallel computing platforms is developed and implemented. Results are presented for a number of scattering and wave propagation simulations conducted using this algorithm, including two spheres in close proximity and a finned missile.

Computational Electrodynamics

Author : Allen Taflove,Susan C. Hagness
Publisher : Artech House Publishers
Page : 1050 pages
File Size : 40,7 Mb
Release : 2005
Category : Science
ISBN : UGA:32108039745644

Get Book

Computational Electrodynamics by Allen Taflove,Susan C. Hagness Pdf

This extensively revised and expanded third edition of the Artech House bestseller, Computational Electrodynamics: The Finite-Difference Time-Domain Method, offers you the most up-to-date and definitive resource on this critical method for solving Maxwell's equations. There has been considerable advancement in FDTD computational technology over the past few years, and this new edition brings you the very latest details with four new invited chapters on advanced techniques for PSTD, unconditional stability, provably stable FDTD-FETD hybrids, and hardware acceleration. Moreover, you find many completely new sections throughout the book, including major updates on convolutional PML ABCs; dispersive, nonlinear, classical-gain, and quantum-gain materials; and micro-, nano-, and bio- photonics.

Theory and Computation of Electromagnetic Fields

Author : Jian-Ming Jin
Publisher : John Wiley & Sons
Page : 744 pages
File Size : 44,6 Mb
Release : 2015-08-10
Category : Science
ISBN : 9781119108085

Get Book

Theory and Computation of Electromagnetic Fields by Jian-Ming Jin Pdf

Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.

Theory and Computation of Electromagnetic Fields in Layered Media

Author : Vladimir Okhmatovski,Shucheng Zheng
Publisher : John Wiley & Sons
Page : 756 pages
File Size : 42,9 Mb
Release : 2024-04-30
Category : Science
ISBN : 9781119763192

Get Book

Theory and Computation of Electromagnetic Fields in Layered Media by Vladimir Okhmatovski,Shucheng Zheng Pdf

Explore the algorithms and numerical methods used to compute electromagnetic fields in multi-layered media In Theory and Computation of Electromagnetic Fields in Layered Media, two distinguished electrical engineering researchers deliver a detailed and up-to-date overview of the theory and numerical methods used to determine electromagnetic fields in layered media. The book begins with an introduction to Maxwell’s equations, the fundamentals of electromagnetic theory, and concepts and definitions relating to Green’s function. It then moves on to solve canonical problems in vertical and horizontal dipole radiation, describe Method of Moments schemes, discuss integral equations governing electromagnetic fields, and explains the Michalski-Zheng theory of mixed-potential Green’s function representation in multi-layered media. Chapters on the evaluation of Sommerfeld integrals, procedures for far field evaluation, and the theory and application of hierarchical matrices are also included, along with: A thorough introduction to free-space Green’s functions, including the delta-function model for point charge and dipole current Comprehensive explorations of the traditional form of layered medium Green’s function in three dimensions Practical discussions of electro-quasi-static and magneto-quasi-static fields in layered media, including electrostatic fields in two and three dimensions In-depth examinations of the rational function fitting method, including direct spectra fitting with VECTFIT algorithms Perfect for scholars and students of electromagnetic analysis in layered media, Theory and Computation of Electromagnetic Fields in Layered Media will also earn a place in the libraries of CAD industry engineers and software developers working in the area of computational electromagnetics.

Finite Element and Finite Difference Methods in Electromagnetic Scattering

Author : M.A. Morgan
Publisher : Elsevier
Page : 398 pages
File Size : 55,6 Mb
Release : 2013-10-22
Category : Technology & Engineering
ISBN : 9781483289533

Get Book

Finite Element and Finite Difference Methods in Electromagnetic Scattering by M.A. Morgan Pdf

This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled scalar potentials, to the consideration of conforming boundary elements and leap-frog time-marching in transient field problems involving corners and wedges in two and three dimensions, the volume will provide an indispensable reference source for practitioners and students of computational electromagnetics.