Computational Nanotechnology

Computational Nanotechnology Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Computational Nanotechnology book. This book definitely worth reading, it is an incredibly well-written.

Computational Nanotechnology

Author : Sarhan M. Musa
Publisher : CRC Press
Page : 540 pages
File Size : 55,9 Mb
Release : 2018-09-03
Category : Science
ISBN : 9781351833455

Get Book

Computational Nanotechnology by Sarhan M. Musa Pdf

Applications of nanotechnology continue to fuel significant innovations in areas ranging from electronics, microcomputing, and biotechnology to medicine, consumer supplies, aerospace, and energy production. As progress in nanoscale science and engineering leads to the continued development of advanced materials and new devices, improved methods of modeling and simulation are required to achieve a more robust quantitative understanding of matter at the nanoscale. Computational Nanotechnology: Modeling and Applications with MATLAB® provides expert insights into current and emerging methods, opportunities, and challenges associated with the computational techniques involved in nanoscale research. Written by, and for, those working in the interdisciplinary fields that comprise nanotechnology—including engineering, physics, chemistry, biology, and medicine—this book covers a broad spectrum of technical information, research ideas, and practical knowledge. It presents an introduction to computational methods in nanotechnology, including a closer look at the theory and modeling of two important nanoscale systems: molecular magnets and semiconductor quantum dots. Topics covered include: Modeling of nanoparticles and complex nano and MEMS systems Theory associated with micromagnetics Surface modeling of thin films Computational techniques used to validate hypotheses that may not be accessible through traditional experimentation Simulation methods for various nanotubes and modeling of carbon nanotube and silicon nanowire transistors In regard to applications of computational nanotechnology in biology, contributors describe tracking of nanoscale structures in cells, effects of various forces on cellular behavior, and use of protein-coated gold nanoparticles to better understand protein-associated nanomaterials. Emphasizing the importance of MATLAB for biological simulations in nanomedicine, this wide-ranging survey of computational nanotechnology concludes by discussing future directions in the field, highlighting the importance of the algorithms, modeling software, and computational tools in the development of efficient nanoscale systems.

Computational Nanotechnology

Author : Sarhan M. Musa
Publisher : CRC Press
Page : 537 pages
File Size : 44,7 Mb
Release : 2018-09-03
Category : Science
ISBN : 9781439841778

Get Book

Computational Nanotechnology by Sarhan M. Musa Pdf

Applications of nanotechnology continue to fuel significant innovations in areas ranging from electronics, microcomputing, and biotechnology to medicine, consumer supplies, aerospace, and energy production. As progress in nanoscale science and engineering leads to the continued development of advanced materials and new devices, improved methods of modeling and simulation are required to achieve a more robust quantitative understanding of matter at the nanoscale. Computational Nanotechnology: Modeling and Applications with MATLAB® provides expert insights into current and emerging methods, opportunities, and challenges associated with the computational techniques involved in nanoscale research. Written by, and for, those working in the interdisciplinary fields that comprise nanotechnology—including engineering, physics, chemistry, biology, and medicine—this book covers a broad spectrum of technical information, research ideas, and practical knowledge. It presents an introduction to computational methods in nanotechnology, including a closer look at the theory and modeling of two important nanoscale systems: molecular magnets and semiconductor quantum dots. Topics covered include: Modeling of nanoparticles and complex nano and MEMS systems Theory associated with micromagnetics Surface modeling of thin films Computational techniques used to validate hypotheses that may not be accessible through traditional experimentation Simulation methods for various nanotubes and modeling of carbon nanotube and silicon nanowire transistors In regard to applications of computational nanotechnology in biology, contributors describe tracking of nanoscale structures in cells, effects of various forces on cellular behavior, and use of protein-coated gold nanoparticles to better understand protein-associated nanomaterials. Emphasizing the importance of MATLAB for biological simulations in nanomedicine, this wide-ranging survey of computational nanotechnology concludes by discussing future directions in the field, highlighting the importance of the algorithms, modeling software, and computational tools in the development of efficient nanoscale systems.

Computational Nanotechnology Using Finite Difference Time Domain

Author : Sarhan M. Musa
Publisher : CRC Press
Page : 402 pages
File Size : 49,5 Mb
Release : 2017-12-19
Category : Science
ISBN : 9781466583627

Get Book

Computational Nanotechnology Using Finite Difference Time Domain by Sarhan M. Musa Pdf

The Finite Difference Time Domain (FDTD) method is an essential tool in modeling inhomogeneous, anisotropic, and dispersive media with random, multilayered, and periodic fundamental (or device) nanostructures due to its features of extreme flexibility and easy implementation. It has led to many new discoveries concerning guided modes in nanoplasmonic waveguides and continues to attract attention from researchers across the globe. Written in a manner that is easily digestible to beginners and useful to seasoned professionals, Computational Nanotechnology Using Finite Difference Time Domain describes the key concepts of the computational FDTD method used in nanotechnology. The book discusses the newest and most popular computational nanotechnologies using the FDTD method, considering their primary benefits. It also predicts future applications of nanotechnology in technical industry by examining the results of interdisciplinary research conducted by world-renowned experts. Complete with case studies, examples, supportive appendices, and FDTD codes accessible via a companion website, Computational Nanotechnology Using Finite Difference Time Domain not only delivers a practical introduction to the use of FDTD in nanotechnology but also serves as a valuable reference for academia and professionals working in the fields of physics, chemistry, biology, medicine, material science, quantum science, electrical and electronic engineering, electromagnetics, photonics, optical science, computer science, mechanical engineering, chemical engineering, and aerospace engineering.

Nanocomputing

Author : Jang-Yu Hsu
Publisher : CRC Press
Page : 368 pages
File Size : 42,9 Mb
Release : 2017-03-03
Category : Science
ISBN : 9789814241274

Get Book

Nanocomputing by Jang-Yu Hsu Pdf

This book provides a comprehensive overview of the computational physics for nanoscience and nanotechnology. Based on MATLAB and the C++ distributed computing paradigm, the book gives instructive explanations of the underlying physics for mesoscopic systems with many listed programs that readily compute physical properties into nanoscales. Many generated graphical pictures demonstrate not only the principles of physics, but also the methodology of computing.

Computational Approaches in Biomedical Nano-Engineering

Author : Ayesha Sohail,Zhiwu Li
Publisher : John Wiley & Sons
Page : 296 pages
File Size : 53,8 Mb
Release : 2018-08-31
Category : Science
ISBN : 9783527344741

Get Book

Computational Approaches in Biomedical Nano-Engineering by Ayesha Sohail,Zhiwu Li Pdf

This book comprehensively and systematically treats modern understanding of the Nano-Bio-Technology and its therapeutic applications. The contents range from the nanomedicine, imaging, targeted therapeutic applications, experimental results along with modelling approaches. It will provide the readers with fundamentals on computational and modelling aspects of advanced nano-materials and nano-technology specifically in the field of biomedicine, and also provide the readers with inspirations for new development of diagnostic imaging and targeted therapeutic applications.

Computational Finite Element Methods in Nanotechnology

Author : Sarhan M. Musa
Publisher : CRC Press
Page : 640 pages
File Size : 51,6 Mb
Release : 2017-12-19
Category : Science
ISBN : 9781439893265

Get Book

Computational Finite Element Methods in Nanotechnology by Sarhan M. Musa Pdf

Computational Finite Element Methods in Nanotechnology demonstrates the capabilities of finite element methods in nanotechnology for a range of fields. Bringing together contributions from researchers around the world, it covers key concepts as well as cutting-edge research and applications to inspire new developments and future interdisciplinary research. In particular, it emphasizes the importance of finite element methods (FEMs) for computational tools in the development of efficient nanoscale systems. The book explores a variety of topics, including: A novel FE-based thermo-electrical-mechanical-coupled model to study mechanical stress, temperature, and electric fields in nano- and microelectronics The integration of distributed element, lumped element, and system-level methods for the design, modeling, and simulation of nano- and micro-electromechanical systems (N/MEMS) Challenges in the simulation of nanorobotic systems and macro-dimensions The simulation of structures and processes such as dislocations, growth of epitaxial films, and precipitation Modeling of self-positioning nanostructures, nanocomposites, and carbon nanotubes and their composites Progress in using FEM to analyze the electric field formed in needleless electrospinning How molecular dynamic (MD) simulations can be integrated into the FEM Applications of finite element analysis in nanomaterials and systems used in medicine, dentistry, biotechnology, and other areas The book includes numerous examples and case studies, as well as recent applications of microscale and nanoscale modeling systems with FEMs using COMSOL Multiphysics® and MATLAB®. A one-stop reference for professionals, researchers, and students, this is also an accessible introduction to computational FEMs in nanotechnology for those new to the field.

Computational Finite Element Methods in Nanotechnology

Author : Sarhan M. Musa
Publisher : CRC Press
Page : 647 pages
File Size : 47,6 Mb
Release : 2012-10-19
Category : Science
ISBN : 9781439893234

Get Book

Computational Finite Element Methods in Nanotechnology by Sarhan M. Musa Pdf

Computational Finite Element Methods in Nanotechnology demonstrates the capabilities of finite element methods in nanotechnology for a range of fields. Bringing together contributions from researchers around the world, it covers key concepts as well as cutting-edge research and applications to inspire new developments and future interdisciplinary research. In particular, it emphasizes the importance of finite element methods (FEMs) for computational tools in the development of efficient nanoscale systems. The book explores a variety of topics, including: A novel FE-based thermo-electrical-mechanical-coupled model to study mechanical stress, temperature, and electric fields in nano- and microelectronics The integration of distributed element, lumped element, and system-level methods for the design, modeling, and simulation of nano- and micro-electromechanical systems (N/MEMS) Challenges in the simulation of nanorobotic systems and macro-dimensions The simulation of structures and processes such as dislocations, growth of epitaxial films, and precipitation Modeling of self-positioning nanostructures, nanocomposites, and carbon nanotubes and their composites Progress in using FEM to analyze the electric field formed in needleless electrospinning How molecular dynamic (MD) simulations can be integrated into the FEM Applications of finite element analysis in nanomaterials and systems used in medicine, dentistry, biotechnology, and other areas The book includes numerous examples and case studies, as well as recent applications of microscale and nanoscale modeling systems with FEMs using COMSOL Multiphysics® and MATLAB®. A one-stop reference for professionals, researchers, and students, this is also an accessible introduction to computational FEMs in nanotechnology for those new to the field.

Computational Nanomedicine and Nanotechnology

Author : Renat R. Letfullin,Thomas F. George
Publisher : Springer
Page : 682 pages
File Size : 54,5 Mb
Release : 2017-02-10
Category : Technology & Engineering
ISBN : 9783319435770

Get Book

Computational Nanomedicine and Nanotechnology by Renat R. Letfullin,Thomas F. George Pdf

This textbook, aimed at advanced undergraduate and graduate students, introduces the basic knowledge required for nanomedicine and nanotechnology, and emphasizes how the combined use of chemistry and light with nanoparticles can serve as treatments and therapies for cancer. This includes nanodevices, nanophototherapies, nanodrug design, and laser heating of nanoparticles and cell organelles. In addition, the book covers the emerging fields of nanophotonics and nanoplasmonics, which deal with nanoscale confinement of radiation and optical interactions on a scale much smaller than the wavelength of the light. The applications of nanophotonics and nanoplasmonics to biomedical research discussed in the book range from optical biosensing to photodynamic therapies.Cutting-edge and reflective of the multidisciplinary nature of nanomedicine, this book effectively combines knowledge and modeling from nanoscience, medicine, biotechnology, physics, optics, engineering, and pharmacy in an easily digestible format. Among the topics covered in-depth are:• The structure of cancer cells and their properties, as well as techniques for selective targeting of cancer and gene therapy.• Nanoplasmonics: Lorentz-Mie simulations of optical properties of nanoparticles and the use of plasmonic nanoparticles in diagnosis and therapy.• Nanophotonics: short and ultrashort laser pulse interactions with nanostructures, time and space simulations of thermal fields in and around the nanobioparticles, and nanoclusters heated by radiation.• Modeling of soft and hard biological tissue ablation by activated nanoparticles, as well as optical, thermal, kinetic, and dynamic modeling.• Detection techniques, including the design and methods of activation of nanodrugs and plasmon resonance detection techniques.• Design and fabrication of nanorobots and nanoparticles.• Effective implementation of nanotherapy treatments.• Nanoheat transfer, particularly the heating and cooling kinetics of nanoparticles.• ...and more!Each chapter contains a set of lectures in the form of text for student readers and PowerPoints for use by instructors, as well as homework exercises. Selected chapters also contain computer practicums, including Maple codes and worked-out examples. This book helps readers become more knowledgeable and versant in nanomedicine and nanotechnology, inspires readers to work creatively and go beyond the ideas and topics presented within, and is sufficiently comprehensive to be of value to research scientists as well as students.

Handbook of Theoretical and Computational Nanotechnology

Author : Michael Rieth,Wolfram Schommers
Publisher : Unknown
Page : 128 pages
File Size : 45,7 Mb
Release : 2006
Category : Nanoscience
ISBN : 158883042X

Get Book

Handbook of Theoretical and Computational Nanotechnology by Michael Rieth,Wolfram Schommers Pdf

Principles of Nanotechnology

Author : G. Ali Mansoori
Publisher : World Scientific
Page : 358 pages
File Size : 51,7 Mb
Release : 2005
Category : Technology & Engineering
ISBN : 9789812561541

Get Book

Principles of Nanotechnology by G. Ali Mansoori Pdf

- Gives unified presentation of many of the major principles in nanotechnology: molecular-based study of condensed matter in small systems. - Authored by an expert in the molecular-based study of matter - Accessible to students, yet of interest to experts - Emphasizes the intrinsic beauty of methods of bottom-up nanotechnology - Includes many full-color figures

Computational Methods for Large Systems

Author : Jeffrey R. Reimers
Publisher : John Wiley & Sons
Page : 568 pages
File Size : 47,8 Mb
Release : 2011-08-24
Category : Science
ISBN : 9780470934722

Get Book

Computational Methods for Large Systems by Jeffrey R. Reimers Pdf

While its results normally complement the information obtained by chemical experiments, computer computations can in some cases predict unobserved chemical phenomena Electronic-Structure Computational Methods for Large Systems gives readers a simple description of modern electronic-structure techniques. It shows what techniques are pertinent for particular problems in biotechnology and nanotechnology and provides a balanced treatment of topics that teach strengths and weaknesses, appropriate and inappropriate methods. It’s a book that will enhance the your calculating confidence and improve your ability to predict new effects and solve new problems.

Computational Approaches in Biomedical Nano-Engineering

Author : Ayesha Sohail,Zhiwu Li
Publisher : John Wiley & Sons
Page : 296 pages
File Size : 48,5 Mb
Release : 2019-01-14
Category : Science
ISBN : 9783527344710

Get Book

Computational Approaches in Biomedical Nano-Engineering by Ayesha Sohail,Zhiwu Li Pdf

This book comprehensively and systematically treats modern understanding of the Nano-Bio-Technology and its therapeutic applications. The contents range from the nanomedicine, imaging, targeted therapeutic applications, experimental results along with modelling approaches. It will provide the readers with fundamentals on computational and modelling aspects of advanced nano-materials and nano-technology specifically in the field of biomedicine, and also provide the readers with inspirations for new development of diagnostic imaging and targeted therapeutic applications.

Computational Nanoscience

Author : Elena Bichoutskaia
Publisher : Royal Society of Chemistry
Page : 445 pages
File Size : 44,7 Mb
Release : 2011
Category : Computers
ISBN : 9781849731331

Get Book

Computational Nanoscience by Elena Bichoutskaia Pdf

Nanoscience is one of the most exciting scientific disciplines as it is concerned with materials and systems, which exhibit novel and significantly improved physical, chemical and biological properties due to their small nanoscale size. It stretches across the whole spectrum of modern science including medicine and health, physics, engineering and chemistry. Providing a deep understanding of the behaviour of matter at the scale of individual atoms and molecules, it takes a crucial step towards future applications of nanotechnology. The remarkable improvements in both theoretical methods and computational techniques make it possible for computational nanoscience to achieve a new level of accuracy. Computational nanoscience is now a discipline capable of leading and guiding experimental efforts. Computational Nanoscience addresses modern challenges in computational science, within the context of the rapidly evolving field of nanotechnology. It satisfies the need for a comprehensive, yet concise and up-to-date, survey of new developments and applications presented by the world's leading academics. It documents major, recent advances in scientific computation, mathematical models and theory development that specifically target the applications in nanotechnology. Suitable for theoreticians, experimental researchers and students, the book shows readers what computational nanoscience can achieve, and how it may be applied in their own work. The twelve chapters cover topics including the concepts behind recent breakthroughs in nanoscience, the development of cutting edge simulation tools, and the variety of new applications.

Mathematics and Physics for Nanotechnology

Author : Paolo Di Sia
Publisher : CRC Press
Page : 169 pages
File Size : 42,7 Mb
Release : 2019-02-05
Category : Science
ISBN : 9780429648304

Get Book

Mathematics and Physics for Nanotechnology by Paolo Di Sia Pdf

Nanobiotechnology is a new interdisciplinary science with revolutionary perspectives arising from the fact that at nanosize the behaviour and characteristics of matter change with respect to ordinary macroscopic dimensions. Nanotechnology is a new way for producing and getting materials, structures and devices with greatly improved or completely new properties and functionalities. This book provides an introductory overview of the nanobiotechnology world along with a general technical framework about mathematical modelling through which we today study the phenomena of charge transport at the nanometer level. Although it is not a purely mathematics or physics book, it introduces the basic mathematical and physical notions that are important and necessary for theory and applications in nanobiotechnology. Therefore, it can be considered an extended formulary of basic and advanced concepts. It can be the starting point for discussions and insights and can be used for further developments in mathematical–physical modelling linked to the nanobiotechnology world. The book is dedicated to all those who follow their ideas in life and pursue their choices with determination and firmness, in a free and independent way.

Theoretical and Technological Advancements in Nanotechnology and Molecular Computation: Interdisciplinary Gains

Author : MacLennan, Bruce
Publisher : IGI Global
Page : 392 pages
File Size : 41,9 Mb
Release : 2010-11-30
Category : Computers
ISBN : 9781609601881

Get Book

Theoretical and Technological Advancements in Nanotechnology and Molecular Computation: Interdisciplinary Gains by MacLennan, Bruce Pdf

Theoretical and Technological Advancements in Nanotechnology and Molecular Computation: Interdisciplinary Gains compiles research in areas where nanoscience and computer science meet. This book explores current and future trends that discus areas such as, cellular nanocomputers, DNA self-assembly, and the architectural design of a "nano-brain." The authors of each chapter have provided in-depth insight into the current state of research in nanotechnology and molecular computation as well as identified successful approaches, tools and methodologies in their research.