Design And Optimization Of Biogas Energy Systems

Design And Optimization Of Biogas Energy Systems Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Design And Optimization Of Biogas Energy Systems book. This book definitely worth reading, it is an incredibly well-written.

Design and Optimization of Biogas Energy Systems

Author : Prashant Baredar,Vikas Khare,Savita Nema
Publisher : Academic Press
Page : 337 pages
File Size : 49,6 Mb
Release : 2020-06-18
Category : Science
ISBN : 9780128227190

Get Book

Design and Optimization of Biogas Energy Systems by Prashant Baredar,Vikas Khare,Savita Nema Pdf

Design and Optimization of Biogas Energy Systems presents an overview on planning, implementing, assessing and optimizing biogas systems, from fuel conversion to power generation. The book introduces the fundamental elements of bioenergy systems, highlighting the specificities of biogas systems. It discusses the current state of their adoption at a global level and the challenges faced by designers and operators. Methods for sizing, simulating and modeling are discussed, including prefeasibility analysis, available production processes, integration into hybrid energy systems, and the application of Big Data analysis and game theory concepts. All chapters include real-life examples and exercises to illustrate the topics being covered. The book goes beyond theory to offer practical knowledge of methods to reach solutions to key challenges in the field. This is a valuable resource for researchers, practitioners and graduate students interested in developing smart, reliable and sustainable biogas technologies. Provides an applied approach to biogas systems, from technology fundamentals, to economic and environmental assessment Explores control methods and reliability prediction of each system component, including modeling and simulation with HOMER and MATLAB Discusses the use of Big Data analysis, numerical methods, and Game Theory for plant assessment

Designing Renewable Energy Systems

Author : Leda Gerber
Publisher : CRC Press
Page : 224 pages
File Size : 48,7 Mb
Release : 2014-12-23
Category : Nature
ISBN : 9781498711289

Get Book

Designing Renewable Energy Systems by Leda Gerber Pdf

The book discusses a multi-objective optimization approach in LCA that allows the flexible construction of comprehensive Pareto fronts to help understand the weightings and relative importance of its elements. The methodology is applied to the pertinent topics of thermochemical wood conversion, deep geothermal energy, and regional energy planning.

Artificial Intelligence for Renewable Energy systems

Author : Ashutosh Kumar Dubey,Sushil Narang,Arun Lal Srivastav,Abhishek Kumar,Vicente García-Díaz
Publisher : Woodhead Publishing
Page : 408 pages
File Size : 44,6 Mb
Release : 2022-08-01
Category : Science
ISBN : 9780323906616

Get Book

Artificial Intelligence for Renewable Energy systems by Ashutosh Kumar Dubey,Sushil Narang,Arun Lal Srivastav,Abhishek Kumar,Vicente García-Díaz Pdf

Artificial Intelligence for Renewable Energy Systems addresses the energy industries remarkable move from traditional power generation to a cost-effective renewable energy system, and most importantly, the paradigm shift from a market-based cost of the commodity to market-based technological advancements. Featuring recent developments and state-of-the-art applications of artificial intelligence in renewable energy systems design, the book emphasizes how AI supports effective prediction for energy generation, electric grid related line loss prediction, load forecasting, and for predicting equipment failure prevention. Looking at approaches in system modeling and performance prediction of renewable energy systems, this volume covers power generation systems, building service systems and combustion processes, exploring advances in machine learning, artificial neural networks, fuzzy logic, genetic algorithms and hybrid mechanisms. Includes real-time applications that illustrates artificial intelligence and machine learning for various renewable systems Features a templated approach that can be used to explore results, with scientific implications followed by detailed case studies Covers computational capabilities and varieties for renewable system design

Hybrid Energy System Models

Author : Asmae Berrada,Rachid El Mrabet
Publisher : Academic Press
Page : 384 pages
File Size : 48,5 Mb
Release : 2020-11-21
Category : Technology & Engineering
ISBN : 9780128214046

Get Book

Hybrid Energy System Models by Asmae Berrada,Rachid El Mrabet Pdf

Hybrid Energy System Models presents a number of techniques to model a large variety of hybrid energy systems in all aspects of sizing, design, operation, economic dispatch, optimization and control. The book's authors present a number of new methods to model hybrid energy systems and several renewable energy systems, including photovoltaic, solar plus wind and hydropower, energy storage, and combined heat and power systems. With critical modeling examples, global case studies and techno-economic modeling integrated in every chapter, this book is essential to understanding the development of affordable energy systems globally, particularly from renewable resources. With a detailed overview and a comparison of hybrid energy systems used in different regions, as well as innovative hybrid energy system designs covered, this book is useful for practicing power and energy engineers needing answers for what factors to consider when modeling a hybrid energy system and what tools are available to model hybrid systems. Combines research on several renewable energy systems, energy storage, and combined heat and power systems into a single informative resource on hybrid energy systems Includes significant global case studies of current and novel modeling techniques for comparison Covers numerical simulations of hybrid systems energy modeling and applications

Biogas

Author : Meisam Tabatabaei,Hossein Ghanavati
Publisher : Springer
Page : 472 pages
File Size : 55,6 Mb
Release : 2018-04-19
Category : Technology & Engineering
ISBN : 9783319773353

Get Book

Biogas by Meisam Tabatabaei,Hossein Ghanavati Pdf

This book presents the state of the art in biogas production using anaerobic digestion technology, with an emphasis on waste utilization/valorization. Offering a comprehensive reference guide to biogas production from different waste streams, it covers various aspects of anaerobic digestion technology from the basics, i.e., microbiological aspects to prominent parameters governing biogas production systems, as well as major principles of their operation, analysis, process control, and troubleshooting. Written and edited by internationally recognized experts in the field of biogas production from both academia and industry, it provides in-depth and cutting-edge information on central developments in the field. In addition, it discusses and reviews major issues affecting biogas production, including the type of feedstock, pretreatment techniques, production systems, design and fabrication of biogas plants, as well as biogas purification and upgrading technologies. ‘Biogas: Fundamentals, Process, and Operation’ also addresses the application of advanced environmental and energy evaluation tools including life cycle assessment (LCA), exergy, techno-economics, and modeling techniques. This book is intended for all researchers, practitioners and students who are interested in the current trends and future prospects of biogas production technologies.

Reactor and Process Design in Sustainable Energy Technology

Author : Fan Shi
Publisher : Elsevier
Page : 290 pages
File Size : 44,8 Mb
Release : 2014-07-28
Category : Technology & Engineering
ISBN : 9780444595782

Get Book

Reactor and Process Design in Sustainable Energy Technology by Fan Shi Pdf

Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. Emphasis on reactor engineering in sustainable energy technology Up-to-date overview of the latest reaction engineering techniques in sustainable energy topics Expert accounts of reactor types, processing, and optimization Figures and tables designed to comprehensively present concepts and procedures Hundreds of citations drawing on many most recent and previously published works on the subject

Advances in Energy Systems Engineering

Author : Georgios M. Kopanos,Pei Liu,Michael C. Georgiadis
Publisher : Springer
Page : 839 pages
File Size : 43,6 Mb
Release : 2016-10-17
Category : Technology & Engineering
ISBN : 9783319428031

Get Book

Advances in Energy Systems Engineering by Georgios M. Kopanos,Pei Liu,Michael C. Georgiadis Pdf

This book provides a scientific framework for integrated solutions to complex energy problems. It adopts a holistic, systems-based approach to demonstrate the potential of an energy systems engineering approach to systematically quantify different options at various levels of complexity (technology, plant, energy supply chain, mega-system). Utilizing modeling, simulation and optimization-based frameworks, along with a number of real-life applications, it focuses on advanced energy systems including energy supply chains, integrated biorefineries, energy planning and scheduling approaches and urban energy systems. Featuring contributions from leading researchers in the field, this work is useful for academics, researchers, industry practitioners in energy systems engineering, and all those who are involved in model-based energy systems.

Handbook of Smart Energy Systems

Author : Michel Fathi,Enrico Zio,Panos M. Pardalos
Publisher : Springer Nature
Page : 3382 pages
File Size : 49,9 Mb
Release : 2023-08-04
Category : Business & Economics
ISBN : 9783030979409

Get Book

Handbook of Smart Energy Systems by Michel Fathi,Enrico Zio,Panos M. Pardalos Pdf

This handbook analyzes and develops methods and models to optimize solutions for energy access (for industry and the general world population alike) in terms of reliability and sustainability. With a focus on improving the performance of energy systems, it brings together state-of-the-art research on reliability enhancement, intelligent development, simulation and optimization, as well as sustainable development of energy systems. It helps energy stakeholders and professionals learn the methodologies needed to improve the reliability of energy supply-and-demand systems, achieve more efficient long-term operations, deal with uncertainties in energy systems, and reduce energy emissions. Highlighting novel models and their applications from leading experts in this important area, this book will appeal to researchers, students, and engineers in the various domains of smart energy systems and encourage them to pursue research and development in this exciting and highly relevant field.

Planning of Hybrid Renewable Energy Systems, Electric Vehicles and Microgrid

Author : Aashish Kumar Bohre,Pradyumn Chaturvedi,Mohan Lal Kolhe,Sri Niwas Singh
Publisher : Springer Nature
Page : 1013 pages
File Size : 48,6 Mb
Release : 2022-05-21
Category : Technology & Engineering
ISBN : 9789811909795

Get Book

Planning of Hybrid Renewable Energy Systems, Electric Vehicles and Microgrid by Aashish Kumar Bohre,Pradyumn Chaturvedi,Mohan Lal Kolhe,Sri Niwas Singh Pdf

This book focuses on various challenges, solutions, and emerging technologies in the operation, control, design, optimization, and protection of microgrids in the presence of hybrid renewable energy sources and electric vehicles. This book provides an insight into the potential applications and recent development of different types of renewable energy systems including AC/DC microgrids, RES integration issues with the grid, electric vehicle technology, etc. The book serves as an interdisciplinary platform for the audience working in the focused area to access information related to energy management, modeling, and control. It covers fundamental knowledge, design, mathematical modeling, applications, and practical issues with sufficient design problems and case studies with detailed planning aspects. This book will serve as a guide for researchers, academicians, practicing engineers, professionals, and scientists, as well as for graduate and postgraduate students working in the area of various applications of RES, Electric Vehicles, and AC/DC Microgrid.

Biogas Systems in China

Author : Bin Chen,Tasawar Hayat,Ahmed Alsaedi
Publisher : Springer
Page : 151 pages
File Size : 41,7 Mb
Release : 2017-09-01
Category : Technology & Engineering
ISBN : 9783662554982

Get Book

Biogas Systems in China by Bin Chen,Tasawar Hayat,Ahmed Alsaedi Pdf

This book derives an explicit analytical pattern (or framework) that permits the examination and optimization of biogas production systems. It provides a concise overview of the current status of biogas and biogas coupled agricultural systems in China, and introduces evaluation methods for energy efficiency, environmental emissions, economic performance and sustainability assessment approaches. Based on empirical studies, it also explores future options for the system development by focusing on emissions mitigation, biogas energy efficiency and system sustainability. Systematic methods of life cycle assessment and thermodynamic analysis may provide new angles for biogas system evaluation. The system discussed is not only a biogas producer, but also a biogas-linked ecological agricultural system, which has the potential to broaden the applicable scopes of renewable energy and eco-agricultural management. The comprehensive, in-depth knowledge and experience presented provide new analytical approaches for researchers in relevant fields and shed light on the construction and operation of emerging anaerobic digestion and biogas industries. This book is a valuable resource for researchers focusing on biogas system modeling, project managers and policymakers.

Wind Solar Hybrid Renewable Energy System

Author : Kenneth Eloghene Okedu,Ahmed Tahour,Abdel Ghani Aissaoui
Publisher : BoD – Books on Demand
Page : 254 pages
File Size : 51,8 Mb
Release : 2020-02-26
Category : Technology & Engineering
ISBN : 9781789845907

Get Book

Wind Solar Hybrid Renewable Energy System by Kenneth Eloghene Okedu,Ahmed Tahour,Abdel Ghani Aissaoui Pdf

This book provides a platform for scientists and engineers to comprehend the technologies of solar wind hybrid renewable energy systems and their applications. It describes the thermodynamic analysis of wind energy systems, and advanced monitoring, modeling, simulation, and control of wind turbines. Based on recent hybrid technologies considering wind and solar energy systems, this book also covers modeling, design, and optimization of wind solar energy systems in conjunction with grid-connected distribution energy management systems comprising wind photovoltaic (PV) models. In addition, solar thermochemical fuel generation topology and evaluation of PV wind hybrid energy for a small island are also included in this book. Since energy storage plays a vital role in renewable energy systems, another salient part of this book addresses the methodology for sizing hybrid battery-backed power generation systems in off-grid connected locations. Furthermore, the book proposes solutions for sustainable rural development via passive solar housing schemes, and the impacts of renewable energies in general, considering social, economic, and environmental factors. Because this book proposes solutions based on recent challenges in the area of hybrid renewable technologies, it is hoped that it will serve as a useful reference to readers who would like to be acquainted with new strategies of control and advanced technology regarding wind solar hybrid systems

Standalone Renewable Energy Systems

Author : Rodolfo Dufo-López,José L. Bernal-Agustín
Publisher : MDPI
Page : 188 pages
File Size : 50,7 Mb
Release : 2020-06-23
Category : Technology & Engineering
ISBN : 9783039361847

Get Book

Standalone Renewable Energy Systems by Rodolfo Dufo-López,José L. Bernal-Agustín Pdf

Standalone (off-grid) renewable energy systems supply electricity in places where there is no access to a standard electrical grid. These systems may include photovoltaic generators, wind turbines, hydro turbines or any other renewable electrical generator. Usually, this kind of system includes electricity storage (commonly lead-acid batteries, but also other types of storage can be used). In some cases, a backup generator (usually powered by fossil fuel, diesel or gasoline) is part of the hybrid system. The modelling of the components, the control of the system and the simulation of the performance of the whole system are necessary to evaluate the system technically and economically. The optimization of the sizing and/or the control is also an important task in this kind of system.

Microturbines

Author : Claire Soares
Publisher : Elsevier
Page : 320 pages
File Size : 46,8 Mb
Release : 2011-04-08
Category : Technology & Engineering
ISBN : 0080549489

Get Book

Microturbines by Claire Soares Pdf

Small-scale gas turbines, known as Microturbines, represent an exciting new development in gas turbine technology. They can run in size from small, human-scale machines down to micro-sized mini-machines that can barely be seen by the naked eye. They also run a great diversity of fuel types, from various types of commercial gases to waste-generated gases. This new book by industry expert Claire Soares will fully describe the various types of microturbines, their applications, and their particular requirements for installation, maintenance and repair. It will explain how a microturbine the size of a refrigerator can power an entire school, hospital or small factory, which is particularly useful for onsite, remote installations. The book will also show how microturbines can be paired with one or more fuel cells to form a hybrid energy source, or can be teamed with any source of distributed power, such as a mall hydro-turbine or a wind turbine. Moreover, the reader will learn how microturbines can run on a variety of fuels that are far cruder than those required by most standard gas turbines; they can be made to run, for instance, using gas from a landfill or biomass source. The reader will find detailed information on costs, specifications, and maintenance and repair guidelines. Ample references and resources will provide the reader with tools for finding manufacturers and product specifications for their own particular needs. Covers major categories of microturbines, including factors common to their design, installation, operation, optimization, maintenance, and repair Invaluable guidance on market factors and economics affecting microturbines and their applications, particularly for distributed power generation Provides current case studies showing microturbines used in hybrid systems with fuel cells and other types of power generation systems

System studies of biogas production

Author : Emma Lindkvist
Publisher : Linköping University Electronic Press
Page : 73 pages
File Size : 45,9 Mb
Release : 2020-04-29
Category : Electronic books
ISBN : 9789179298326

Get Book

System studies of biogas production by Emma Lindkvist Pdf

Biogas has the potential to be part of the transition towards a more sustainable energy system. Biogas is a renewable energy source and can play an important role in modern waste management systems. Biogas production can also help recirculate nutrients back to farmland. Besides all this, biogas is a locally produced energy source with the potential to increase global resource efficiency, since it can lead to more value and less waste, as well as decreased negative environmental effects. However, biogas production systems are complex, including different substrates, different applications for biogas and digestate, and different technology solutions for digestion, pre-treatment and for upgrading the raw gas. To increase the development of biogas production systems, knowledge sharing is a key factor. To increase this knowledge sharing, comprehensible analysis and comparisons of biogas production systems are necessary. Thus, studies are needed to verify the resource efficiency of biogas production systems from different perspectives. The aim of this thesis is to perform a systems analysis of biogas production systems and to explore how to analyse and compare biogas production systems. An additional aim is to study biogas production systems from a systems perspective, with a focus on environment, energy and economy. Studying biogas production systems from different system levels, as well as from different approaches, is beneficial because it results in deeper knowledge of biogas systems and greater opportunities to identify synergies. Systems studies of biogas are important, since biogas systems are often complex and integrated with other systems. In this thesis, biogas systems analyses are performed at different levels. In the widest system study, classifications of different biogas plants are analysed and classifications in different European countries are compared, with the prospect of paving the way for a new common classification for biogas plants in Europe. Today, classifications vary between countries, and hence comparisons of plants in different countries are difficult. In the narrowest system study, a new methodology for analysing energy demand at different biogas production plants has been developed. The aim was to develop a methodology that is applicable for all kinds of biogas plants with energy inputs. The methodology describes the process of analysing energy demand and allocating energy to sub-processes and unit processes. Further, an approach for assessing the resource efficiency of different treatment options for organic waste was designed. The approach includes environmental, economic and energy perspectives, and was applied to five different regions with several food manufacturing companies. A study of treatment options for organic waste from a single food company was also conducted. The results showed that biogas production is a resource-efficient way to treat waste from the food industry. The approach enables a wider analysis of biogas systems, and the results from the applications show the complexity of assessing resource efficiency. It is also shown that it is important to understand that the resource efficiency of a system is always in relation to the substituted system. In this thesis, three different approaches to analysing biogas production systems are presented: categorization, resource efficiency analysis and energy demand analysis. These approaches all contribute to the understanding of biogas systems and can help, in different ways, to increase knowledge about biogas systems in the world. If knowledge about different biogas systems can be easily disseminated, more of the unused potential of biogas production may be realized, and hence more fossil fuels can be replaced within the energy system. Biogas har potentialen att vara en del av övergången till ett mer hållbart energisystem. Biogas är en förnybar energikälla som kan spela en viktig roll i moderna avfallshanteringssystem. Produktion av biogas kan även hjälpa till att återcirkulera näringsämnen tillbaka till jordbruksmark. Förutom allt detta är biogas en lokalt producerad energikälla med potential att öka resurseffektiviteten i världen, eftersom det kan leda till ökat värde och mindre avfall samt minskade negativa miljöeffekter. Dock är biogasproduktionssystem komplexa, inklusive exempelvis olika substrat, användning för biogasen och rötresterna, olika tekniska lösningar för rötresterna såväl som förbehandling av substrat och uppgradering av rågas. För att öka utvecklingen av biogasproduktionssystem är kunskapsdelning en nyckelfaktor. För att öka kunskapsdelningen är tydliga analyser och jämförelser av biogasproduktionssystem nödvändiga. Därför behövs studier för att verifiera resurseffektiviteten för biogasproduktionssystem från olika perspektiv. Syftet med denna avhandling är att utföra systemanalyser av biogasproduktionssystem och att undersöka hur man analyserar och jämför biogasproduktionssystem. Vidare är syftet också att studera biogasproduktionssystem ur ett systemperspektiv med fokus på miljö, energi och ekonomi. Det är fördelaktigt att studera biogasproduktionssystem på olika systemnivåer och utifrån olika tillvägagångssätt, eftersom kunskapen om biogassystem fördjupas och möjligheterna att hitta synergier ökar. Systemstudier av biogas är viktigt eftersom biogassystem ofta är komplexa och integrerade i andra system. I denna avhandling utförs analyser på olika nivåer av biogassystemen. På den högsta systemnivån analyseras klassificeringar av olika biogasanläggningar. Klassificeringar i olika europeiska länder jämförs, med förhoppningen att bana väg mot en ny, gemensam klassificering för biogasanläggningar i Europa. Idag varierar klassificeringarna mellan länder och därför är jämförelser av anläggningar mellan länder svåra. På den lägsta systemnivån utvecklades en ny metod för analys av energibehov vid olika biogasproduktionsanläggningar. Syftet var att utveckla en metod för alla typer av biogasanläggningar. Metodiken beskriver processen för att analysera energibehov och fördela energin till delprocesser och enhetsprocesser. Vidare utformades en metod för att bedöma resurseffektiviteten hos olika behandlingsalternativ för organiskt avfall. Metoden inkluderar miljö, ekonomi och energi och tillämpades i fem olika regioner med flera livsmedelsindustriföretag. En studie av behandlingsalternativ för organiskt avfall från ett enda livsmedelsföretag genomfördes också. Resultaten visade att biogasproduktion är ett resurseffektivt sätt att behandla avfall från livsmedelsindustrin. Metoden möjliggör en bredare analys av biogassystem och resultaten från tillämpningarna visar komplexiteten i att utvärdera resurseffektiviteten. Det visas också att det är viktigt att förstå att ett systems resurseffektivitet alltid är i förhållande till det substituerade systemet. I denna avhandling presenteras tre olika metoder för analys av biogasproduktionssystem: kategorisering, resurseffektivitetsanalys och energibehovsanalys. Dessa tillvägagångssätt bidrar alla till att förstå biogassystem och kan på olika sätt bidra till att öka kunskapen för biogassystem i världen. Med bra system för att sprida kunskap om olika biogassystem kan mer av den outnyttjade potentialen för biogasproduktion realiseras och därmed kan fler fossila bränslen i energisystemet ersättas, samtidigt som de övriga fördelarna med biogas också kommer samhället till nytta.

Design and Performance Optimization of Renewable Energy Systems

Author : Mamdouh Assad,Marc A Rosen
Publisher : Academic Press
Page : 319 pages
File Size : 40,5 Mb
Release : 2021-01-12
Category : Science
ISBN : 9780128232323

Get Book

Design and Performance Optimization of Renewable Energy Systems by Mamdouh Assad,Marc A Rosen Pdf

Design and Performance Optimization of Renewable Energy Systems provides an integrated discussion of issues relating to renewable energy performance design and optimization using advanced thermodynamic analysis with modern methods to configure major renewable energy plant configurations (solar, geothermal, wind, hydro, PV). Vectors of performance enhancement reviewed include thermodynamics, heat transfer, exergoeconomics and neural network techniques. Source technologies studied range across geothermal power plants, hydroelectric power, solar power towers, linear concentrating PV, parabolic trough solar collectors, grid-tied hybrid solar PV/Fuel cell for freshwater production, and wind energy systems. Finally, nanofluids in renewable energy systems are reviewed and discussed from the heat transfer enhancement perspective. Reviews the fundamentals of thermodynamics and heat transfer concepts to help engineers overcome design challenges for performance maximization Explores advanced design and operating principles for solar, geothermal and wind energy systems with diagrams and examples Combines detailed mathematical modeling with relevant computational analyses, focusing on novel techniques such as artificial neural network analyses Demonstrates how to maximize overall system performance by achieving synergies in equipment and component efficiency