System Studies Of Biogas Production

System Studies Of Biogas Production Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of System Studies Of Biogas Production book. This book definitely worth reading, it is an incredibly well-written.

System studies of biogas production

Author : Emma Lindkvist
Publisher : Linköping University Electronic Press
Page : 73 pages
File Size : 51,7 Mb
Release : 2020-04-29
Category : Electronic books
ISBN : 9789179298326

Get Book

System studies of biogas production by Emma Lindkvist Pdf

Biogas has the potential to be part of the transition towards a more sustainable energy system. Biogas is a renewable energy source and can play an important role in modern waste management systems. Biogas production can also help recirculate nutrients back to farmland. Besides all this, biogas is a locally produced energy source with the potential to increase global resource efficiency, since it can lead to more value and less waste, as well as decreased negative environmental effects. However, biogas production systems are complex, including different substrates, different applications for biogas and digestate, and different technology solutions for digestion, pre-treatment and for upgrading the raw gas. To increase the development of biogas production systems, knowledge sharing is a key factor. To increase this knowledge sharing, comprehensible analysis and comparisons of biogas production systems are necessary. Thus, studies are needed to verify the resource efficiency of biogas production systems from different perspectives. The aim of this thesis is to perform a systems analysis of biogas production systems and to explore how to analyse and compare biogas production systems. An additional aim is to study biogas production systems from a systems perspective, with a focus on environment, energy and economy. Studying biogas production systems from different system levels, as well as from different approaches, is beneficial because it results in deeper knowledge of biogas systems and greater opportunities to identify synergies. Systems studies of biogas are important, since biogas systems are often complex and integrated with other systems. In this thesis, biogas systems analyses are performed at different levels. In the widest system study, classifications of different biogas plants are analysed and classifications in different European countries are compared, with the prospect of paving the way for a new common classification for biogas plants in Europe. Today, classifications vary between countries, and hence comparisons of plants in different countries are difficult. In the narrowest system study, a new methodology for analysing energy demand at different biogas production plants has been developed. The aim was to develop a methodology that is applicable for all kinds of biogas plants with energy inputs. The methodology describes the process of analysing energy demand and allocating energy to sub-processes and unit processes. Further, an approach for assessing the resource efficiency of different treatment options for organic waste was designed. The approach includes environmental, economic and energy perspectives, and was applied to five different regions with several food manufacturing companies. A study of treatment options for organic waste from a single food company was also conducted. The results showed that biogas production is a resource-efficient way to treat waste from the food industry. The approach enables a wider analysis of biogas systems, and the results from the applications show the complexity of assessing resource efficiency. It is also shown that it is important to understand that the resource efficiency of a system is always in relation to the substituted system. In this thesis, three different approaches to analysing biogas production systems are presented: categorization, resource efficiency analysis and energy demand analysis. These approaches all contribute to the understanding of biogas systems and can help, in different ways, to increase knowledge about biogas systems in the world. If knowledge about different biogas systems can be easily disseminated, more of the unused potential of biogas production may be realized, and hence more fossil fuels can be replaced within the energy system. Biogas har potentialen att vara en del av övergången till ett mer hållbart energisystem. Biogas är en förnybar energikälla som kan spela en viktig roll i moderna avfallshanteringssystem. Produktion av biogas kan även hjälpa till att återcirkulera näringsämnen tillbaka till jordbruksmark. Förutom allt detta är biogas en lokalt producerad energikälla med potential att öka resurseffektiviteten i världen, eftersom det kan leda till ökat värde och mindre avfall samt minskade negativa miljöeffekter. Dock är biogasproduktionssystem komplexa, inklusive exempelvis olika substrat, användning för biogasen och rötresterna, olika tekniska lösningar för rötresterna såväl som förbehandling av substrat och uppgradering av rågas. För att öka utvecklingen av biogasproduktionssystem är kunskapsdelning en nyckelfaktor. För att öka kunskapsdelningen är tydliga analyser och jämförelser av biogasproduktionssystem nödvändiga. Därför behövs studier för att verifiera resurseffektiviteten för biogasproduktionssystem från olika perspektiv. Syftet med denna avhandling är att utföra systemanalyser av biogasproduktionssystem och att undersöka hur man analyserar och jämför biogasproduktionssystem. Vidare är syftet också att studera biogasproduktionssystem ur ett systemperspektiv med fokus på miljö, energi och ekonomi. Det är fördelaktigt att studera biogasproduktionssystem på olika systemnivåer och utifrån olika tillvägagångssätt, eftersom kunskapen om biogassystem fördjupas och möjligheterna att hitta synergier ökar. Systemstudier av biogas är viktigt eftersom biogassystem ofta är komplexa och integrerade i andra system. I denna avhandling utförs analyser på olika nivåer av biogassystemen. På den högsta systemnivån analyseras klassificeringar av olika biogasanläggningar. Klassificeringar i olika europeiska länder jämförs, med förhoppningen att bana väg mot en ny, gemensam klassificering för biogasanläggningar i Europa. Idag varierar klassificeringarna mellan länder och därför är jämförelser av anläggningar mellan länder svåra. På den lägsta systemnivån utvecklades en ny metod för analys av energibehov vid olika biogasproduktionsanläggningar. Syftet var att utveckla en metod för alla typer av biogasanläggningar. Metodiken beskriver processen för att analysera energibehov och fördela energin till delprocesser och enhetsprocesser. Vidare utformades en metod för att bedöma resurseffektiviteten hos olika behandlingsalternativ för organiskt avfall. Metoden inkluderar miljö, ekonomi och energi och tillämpades i fem olika regioner med flera livsmedelsindustriföretag. En studie av behandlingsalternativ för organiskt avfall från ett enda livsmedelsföretag genomfördes också. Resultaten visade att biogasproduktion är ett resurseffektivt sätt att behandla avfall från livsmedelsindustrin. Metoden möjliggör en bredare analys av biogassystem och resultaten från tillämpningarna visar komplexiteten i att utvärdera resurseffektiviteten. Det visas också att det är viktigt att förstå att ett systems resurseffektivitet alltid är i förhållande till det substituerade systemet. I denna avhandling presenteras tre olika metoder för analys av biogasproduktionssystem: kategorisering, resurseffektivitetsanalys och energibehovsanalys. Dessa tillvägagångssätt bidrar alla till att förstå biogassystem och kan på olika sätt bidra till att öka kunskapen för biogassystem i världen. Med bra system för att sprida kunskap om olika biogassystem kan mer av den outnyttjade potentialen för biogasproduktion realiseras och därmed kan fler fossila bränslen i energisystemet ersättas, samtidigt som de övriga fördelarna med biogas också kommer samhället till nytta.

The role of biogas in a more sustainable energy system in Sweden

Author : Sofia Dahlgren
Publisher : Linköping University Electronic Press
Page : 61 pages
File Size : 41,8 Mb
Release : 2019-11-18
Category : Electronic
ISBN : 9789179299460

Get Book

The role of biogas in a more sustainable energy system in Sweden by Sofia Dahlgren Pdf

There are numerous problems in the world that need to be dealt with in order to achieve sustainable development. The energy system has significant negative impacts on many of these problems, and there is a need for a transition towards more sustainable energy. Sweden has already started this transition and is using large amounts of renewable energy. However, within the transport sector and the manufacturing sector in particular, large amounts of fossil fuels are still used. Biogas is one alternative that can help solve several sustainability problems and that could be part of a future more sustainable energy system. However, it is not certain what biogas is most suitable to be used for. The aim of this thesis is to investigate how biogas should be used in a future more sustainable energy system, by answering three research questions: 1) In what ways can biogas be used in a more sustainable energy system? 2) How can we assess whether biogas is suitable in a specific context? and 3) What determines whether it is easy or difficult for a user to start using biogas? These questions are explored in a Swedish context using four appended articles, which are based on two collaborative projects using a combination of workshops, literature reviews and interviews. Biogas can be used for heat, electricity or fuel in the manufacturing or transport sector. In Sweden, heat and electricity are mainly of interest for smaller production scales, while production on larger scales will likely be dominated by upgrading mostly to CBG but also to LBG. CBG can be used for less energy-intensive purposes, such as cars or buses, while the growing interest in LBG in Sweden may open up new market segments for biogas which are more energy-intensive, such as heavy trucks or shipping, or in geographical locations that are further away from the site of production. Several sustainability assessment methods exist that can be used to evaluate whether biogas is suitable in a specific context, such as multi-criteria assessments or scenario analyses. These methods can include a number of different aspects that are relevant to biogas use, such as GHG emissions, safety issues, and the vitality of the surrounding region. In order to introduce biogas, six main factors were identified that can make this easier or more difficult: technical maturity, tank volume, distance between the producer and the user, scale of energy use, policies and costs, and strategies of individual organizations. Overall, the rise in LBG production creates new opportunities for biogas use in both geographical and usage areas that did not previously use biogas. There is no simple answer to what biogas should be used for in the future – rather, this depends on the circumstances. It is also possible that the usage areas that are most suitable now for biogas might not be the most suitable areas in the future, depending on developments within, for example, the electricity system and hydrogen. However, CBG and LBG are likely to dominate biogas production in Sweden until then.

Biogas Systems

Author : K. M. Mital
Publisher : Taylor & Francis
Page : 304 pages
File Size : 51,5 Mb
Release : 1997
Category : Biogas
ISBN : 8122411045

Get Book

Biogas Systems by K. M. Mital Pdf

This Book Is Written With Special Focus On Issues Relating To Policies And Strategies For Planning And Implementation Of Biogas Programme. The Book Provides A Detailed Overview Of Biogas Technology Covering All The Facets. It Provides Comprehensive History And Progress Of Biomethanation In Select Countries And Regions Where It Has Made Special Mark. It Provides A Detailed Overview Of Developments In India Covering Historical Perspectives, Biogas Potential, Chronological Progress Of Biomethanation, And Enumerates References Made To Biogas At Important Seminars And Conferences By Eminent Personalities From India And Abroad. It Comprehensively Spells Out Various Implementation Strategies Particularly The Turnkey Approach Which Is Largely Responsible For Bringing Biogas Revolution In India Judging By The Unprecedented Spurt In The Number Of Biogas Plants Installed In Recent Years.It Consolidates The Findings And Recommendations Of Several Socio-Economic Surveys On Biomethanation Undertaken In Past In India From Time To Time. It Presents Case-Studies Of Several Community Biogas Plants Which Have Greatly Helped In Improving The Rural Economy. It Also Provides An Overview Of Energy Needs Of Developing Countries, Reviews Integrated Rural Energy Programme (Irep) And The Urjagram Programmes Of The Union Government As Supportive Programmes For Biomethanation, And Views Biogas Programme As An Instrument Of Sustainable Development. It Discusses At Length The Economics And Cost- Effectiveness Of Biogas Systems.The Book Also Identifies Areas For Further Studies And Looks Forward That Biomethanation Will Scale New Eights Even When The Subsidies Are Completely Withdrawn And Market-Driven Approach Under The New Economic Policy Governs The Biogas Programme. In Short, The Book Covers All Related Aspects Involving Policies, Progress And Prospects Of Biomethanation In India And Abroad.

Biogas Production

Author : Nagamani Balagurusamy,Anuj Kumar Chandel
Publisher : Springer Nature
Page : 465 pages
File Size : 42,5 Mb
Release : 2021-01-11
Category : Science
ISBN : 9783030588274

Get Book

Biogas Production by Nagamani Balagurusamy,Anuj Kumar Chandel Pdf

This book focuses on biogas production by anaerobic digestion, which is the most popular bioenergy technology of today. Using anaerobic digestion for the production of biogas is a sustainable approach that simultaneously also allows the treatment of organic waste. The energy contained in the substrate is released in the form of biogas, which can be employed as a renewable fuel in diverse industrial sectors. Although biogas generation is considered an established process, it continues to evolve, e.g. by incorporating modifications and improvements to increase its efficiency and its downstream applications. The chapters of this book review the progress made related to feedstock, system configuration and operational conditions. It also addresses microbial pathways utilized, as well as storage, transportation and usage of biogas. This book is an up-to-date resource for scientists and students working on improving biogas production.

Biogas Systems in China

Author : Bin Chen,Tasawar Hayat,Ahmed Alsaedi
Publisher : Springer
Page : 151 pages
File Size : 47,9 Mb
Release : 2017-09-01
Category : Technology & Engineering
ISBN : 9783662554982

Get Book

Biogas Systems in China by Bin Chen,Tasawar Hayat,Ahmed Alsaedi Pdf

This book derives an explicit analytical pattern (or framework) that permits the examination and optimization of biogas production systems. It provides a concise overview of the current status of biogas and biogas coupled agricultural systems in China, and introduces evaluation methods for energy efficiency, environmental emissions, economic performance and sustainability assessment approaches. Based on empirical studies, it also explores future options for the system development by focusing on emissions mitigation, biogas energy efficiency and system sustainability. Systematic methods of life cycle assessment and thermodynamic analysis may provide new angles for biogas system evaluation. The system discussed is not only a biogas producer, but also a biogas-linked ecological agricultural system, which has the potential to broaden the applicable scopes of renewable energy and eco-agricultural management. The comprehensive, in-depth knowledge and experience presented provide new analytical approaches for researchers in relevant fields and shed light on the construction and operation of emerging anaerobic digestion and biogas industries. This book is a valuable resource for researchers focusing on biogas system modeling, project managers and policymakers.

The Biogas Handbook

Author : Arthur Wellinger,Jerry D Murphy,David Baxter
Publisher : Elsevier
Page : 504 pages
File Size : 46,8 Mb
Release : 2013-02-19
Category : Technology & Engineering
ISBN : 9780857097415

Get Book

The Biogas Handbook by Arthur Wellinger,Jerry D Murphy,David Baxter Pdf

With pressure increasing to utilise wastes and residues effectively and sustainably, the production of biogas represents one of the most important routes towards reaching national and international renewable energy targets. The biogas handbook: Science, production and applications provides a comprehensive and systematic guide to the development and deployment of biogas supply chains and technology. Following a concise overview of biogas as an energy option, part one explores biomass resources and fundamental science and engineering of biogas production, including feedstock characterisation, storage and pre-treatment, and yield optimisation. Plant design, engineering, process optimisation and digestate utilisation are the focus of part two. Topics considered include the engineering and process control of biogas plants, methane emissions in biogas production, and biogas digestate quality, utilisation and land application. Finally, part three discusses international experience and best practice in biogas utilisation. Biogas cleaning and upgrading to biomethane, biomethane use as transport fuel and the generation of heat and power from biogas for stationery applications are all discussed. The book concludes with a review of market development and biomethane certification schemes. With its distinguished editors and international team of expert contributors, The biogas handbook: Science, production and applications is a practical reference to biogas technology for process engineers, manufacturers, industrial chemists and biochemists, scientists, researchers and academics working in this field. Provides a concise overview of biogas as an energy option Explores biomass resources for production Examines plant design and engineering and process optimisation

Biogas Technology in the Third World

Author : Andrew Barnett,Leo Pyle,S. K. Subramanian
Publisher : Unknown
Page : 136 pages
File Size : 44,5 Mb
Release : 1978
Category : Social Science
ISBN : STANFORD:36105030383264

Get Book

Biogas Technology in the Third World by Andrew Barnett,Leo Pyle,S. K. Subramanian Pdf

IDRC pub. Monograph on Biogas generation and technical aspects of biomass and organic waste fermentation in developing countries - discusses other energy sources available to rural communitys, feasibility of small- scale digestors for the production of fuel and fertilizer, social implications and economic implications of Biogas technology, and includes case studies from Asia. Bibliography pp. 127 to 132, diagrams, graphs and statistical tables.

Biogas Technology, Transfer and Diffusion

Author : Mahmoud M. El-Halwagi
Publisher : Springer Science & Business Media
Page : 735 pages
File Size : 52,6 Mb
Release : 2012-12-06
Category : Science
ISBN : 9789400943131

Get Book

Biogas Technology, Transfer and Diffusion by Mahmoud M. El-Halwagi Pdf

The International Conference on the State of the Art on Biogas Technology, Transfer and Diffusion was held in Cairo, Egypt, from 17 to 24 November 1984. The Conference was organized by the Egyptian Academy of Scientific Research and Technology (ASR T), the Egyptian National Research Centre (NRC), the Bioenergy Systems and Technology project (BST) of the US Agency for International Development (US/AID) Office of Energy, and the National Academy of Sciences (NAS). A number of international organizations and agencies co-sponsored the Conference. More than 100 participants from 40 countries attended. The purpose of the Conference was to assess the viability of biogas technology (BGT) and propose future courses of action for exploiting BGT prospects to the fullest extent. The Conference emphasized a balanced coverage of technical, environ mental, social, economic and organizational aspects relevant to biogas systems design, operation and diffusion. It was organized to incorporate experiences that are pertinent, for the most part, to developing countries. In addition to the wide spectrum of presentations and country programs, structured and non-structured discussions among the participants were strongly encouraged in thematic sessions at round-table discussions, and through personal contacts during poster sessions and field trips. It was clear from the enthusiastic response of most participants that the Conference, in large measure, succeeded in fulfilling its mission. Although draft papers were distributed to all participants, it was felt that the results obtained were worthy of organized and refined documentation. And this is precisely what this book intends to do.

Design and Optimization of Biogas Energy Systems

Author : Prashant Baredar,Vikas Khare,Savita Nema
Publisher : Academic Press
Page : 337 pages
File Size : 52,7 Mb
Release : 2020-06-18
Category : Science
ISBN : 9780128227190

Get Book

Design and Optimization of Biogas Energy Systems by Prashant Baredar,Vikas Khare,Savita Nema Pdf

Design and Optimization of Biogas Energy Systems presents an overview on planning, implementing, assessing and optimizing biogas systems, from fuel conversion to power generation. The book introduces the fundamental elements of bioenergy systems, highlighting the specificities of biogas systems. It discusses the current state of their adoption at a global level and the challenges faced by designers and operators. Methods for sizing, simulating and modeling are discussed, including prefeasibility analysis, available production processes, integration into hybrid energy systems, and the application of Big Data analysis and game theory concepts. All chapters include real-life examples and exercises to illustrate the topics being covered. The book goes beyond theory to offer practical knowledge of methods to reach solutions to key challenges in the field. This is a valuable resource for researchers, practitioners and graduate students interested in developing smart, reliable and sustainable biogas technologies. Provides an applied approach to biogas systems, from technology fundamentals, to economic and environmental assessment Explores control methods and reliability prediction of each system component, including modeling and simulation with HOMER and MATLAB Discusses the use of Big Data analysis, numerical methods, and Game Theory for plant assessment

Biogas Plants

Author : Wojciech Czekala
Publisher : John Wiley & Sons
Page : 357 pages
File Size : 41,8 Mb
Release : 2023-12-19
Category : Science
ISBN : 9781119863786

Get Book

Biogas Plants by Wojciech Czekala Pdf

Biogas Plants Comprehensive resource highlighting the global significance of biogas and reviewing the current status of biogas production. Biogas Plants presents an overview of biogas production, starting from the substrates (characteristics, pretreatment, and storage), addressing technical and technological aspects of fermentation processes, and covering the environmental and agricultural significance of obtained digestate. Written by a team of experts with extensive theoretical and practical experience in the areas of bio-waste, biogas plants, and reduction of greenhouse gas emissions, Biogas Plants discusses keys topics including: Anaerobic digestion, including discussion of substrates and products Advantages of biogas plants, with emphasis on their future potential for stable and controlled renewable energy Global significance of the biogas sector, including its importance in electro-energy system stabilization, biogas plants for energy storage, bio-waste utilization, and biomethane production A thorough and complete resource on the subject, Biogas Plants will appeal to academic researchers and industry scientists and engineers working in the fields of biogas, bio-waste, bioenergy, renewable resources, waste management and carbon reduction, along with process engineers, environmental engineers, biotechnologists, and agricultural scientists. For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs

Biogas Processes for Sustainable Development

Author : Uri Marchaim,Food and Agriculture Organization of the United Nations
Publisher : Food & Agriculture Org.
Page : 244 pages
File Size : 43,8 Mb
Release : 1992
Category : Business & Economics
ISBN : 9251031266

Get Book

Biogas Processes for Sustainable Development by Uri Marchaim,Food and Agriculture Organization of the United Nations Pdf

Intended to assist engineers, government officials and funding agencies to meet present and future challenges and make decisions on the promotion of anaerobic digestion as an alternative source of energy.

Biogas Production

Author : Ackmez Mudhoo
Publisher : John Wiley & Sons
Page : 352 pages
File Size : 40,8 Mb
Release : 2012-04-30
Category : Technology & Engineering
ISBN : 9781118404072

Get Book

Biogas Production by Ackmez Mudhoo Pdf

Biogas Production covers the most cutting-edge pretreatment processes being used and studied today for the production of biogas. As an increasingly important piece of the "energy pie," biogas and other biofuels are being used more and more around the world in every conceivable area of industry and could be a partial answer to the energy problem and the elimination of global warming. This book will highlight the recent advances in the pretreatment and value addition of lignocellulosic wastes (LCW) with the main focus on domestic and agro-industrial residues. Mechanical, physical, and biological treatment systems are brought into perspective. The main value-added products from lignocellulosic wastes are summarized in a manner that pinpoints the most recent trends and the future directions. Physico-chemical and biological treatment systems seem to be the most favored options while biofuels, biodegradable composites, and biosorbents production paint a bright picture of the current and future bio-based products. Engineered microbes seem to tackle the problem of bioconversion of substrates that are otherwise nonconvertible by conventional wild strains. Although the main challenge facing LCW utilization is the high costs involved in treatment and production processes, some recent affordable processes with promising results have been proposed. Future trends are being directed to nanobiotechnology and genetic engineering for improved processes and products.

Biogas Technology

Author : R. S. Khoiyangbam,Navindu Gupta,Sushil Kumar
Publisher : The Energy and Resources Institute (TERI)
Page : 217 pages
File Size : 42,7 Mb
Release : 2011-01-01
Category : Technology & Engineering
ISBN : 9788179934043

Get Book

Biogas Technology by R. S. Khoiyangbam,Navindu Gupta,Sushil Kumar Pdf

The global demand for energy is met mainly by fossil fuels. Their excessive and indiscriminate use, coupled with increasing demand for energy, will soon deplete their existing reserves. Therefore, it is extremely important to find alternative, environment-friendly, and ecologically sound sources of energy for meeting the present and future energy requirements. Biogas Technology: Towards Sustainable Development makes an attempt to explore the potential of utilizing biodegradable biomass as fuel and manure.

FUEL GAS PROD FROM BIOMASS VOLUME I

Author : Donald Lee Wise
Publisher : Springer
Page : 290 pages
File Size : 47,7 Mb
Release : 1981
Category : Mathematics
ISBN : UOM:39015000498470

Get Book

FUEL GAS PROD FROM BIOMASS VOLUME I by Donald Lee Wise Pdf

Overview of potential for fuels from biomass and the U.S.Department of Energy Programs and Plans; Review of methane fermentation fundamentals; Biogas research projects in Central America; Biofuels and their generation from biomass; Biogas production and animal manure; An assessment of beef catle feedlot types, sizes, and growth throught the United States; Research on biogas and utilization in isolated rural communities.

Emerging Technologies and Biological Systems for Biogas Upgrading

Author : Nabin Aryal,Lars Ditlev Morck Ottosen,Michael Vedel Wegener Kofoed,Deepak Pant
Publisher : Academic Press
Page : 530 pages
File Size : 43,8 Mb
Release : 2021-03-31
Category : Science
ISBN : 9780323853552

Get Book

Emerging Technologies and Biological Systems for Biogas Upgrading by Nabin Aryal,Lars Ditlev Morck Ottosen,Michael Vedel Wegener Kofoed,Deepak Pant Pdf

Emerging Technologies and Biological Systems for Biogas Upgrading systematically summarizes the fundamental principles and the state-of-the-art of biogas cleaning and upgrading technologies, with special emphasis on biological processes for carbon dioxide (CO2), hydrogen sulfide (H2S), siloxane, and hydrocarbon removal. After analyzing the global scenario of biogas production, upgrading and utilization, this book discusses the integration of methanation processes to power-to-gas systems for methane (CH4) production and physiochemical upgrading technologies, such as chemical absorption, water scrubbing, pressure swing adsorption and the use of membranes. It then explores more recent and sustainable upgrading technologies, such as photosynthetic processes using algae, hydrogen-mediated microbial techniques, electrochemical, bioelectrochemical, and cryogenic approaches. H2S removal with biofilters is also covered, as well as removal of siloxanes through polymerization, peroxidation, biological degradation and gas-liquid absorption. The authors also thoroughly consider issues of mass transfer limitation in biomethanation from waste gas, biogas upgrading and life cycle assessment of upgrading technologies, techno-economic aspects, challenges for upscaling, and future trends. Providing specific information on biogas upgrading technology, and focusing on the most recent developments, Emerging Technologies and Biological Systems for Biogas Upgrading is a unique resource for researchers, engineers, and graduate students in the field of biogas production and utilization, including waste-to-energy and power-to-gas. It is also useful for entrepreneurs, consultants, and decision-makers in governmental agencies in the fields of sustainable energy, environmental protection, greenhouse gas emissions and climate change, and strategic planning. Explores all major technologies for biogas upgrading through physiochemical, biological, and electrochemical processes Discusses CO2, H2S, and siloxane removal techniques Provides a systematical approach to discuss technologies, including challenges to gas–liquid mass transfer, life cycle assessment, technoeconomic implications, upscaling and systems integration