Distributed Algorithms For Message Passing Systems

Distributed Algorithms For Message Passing Systems Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Distributed Algorithms For Message Passing Systems book. This book definitely worth reading, it is an incredibly well-written.

Distributed Algorithms for Message-Passing Systems

Author : Michel Raynal
Publisher : Springer Science & Business Media
Page : 518 pages
File Size : 51,9 Mb
Release : 2013-06-29
Category : Computers
ISBN : 9783642381232

Get Book

Distributed Algorithms for Message-Passing Systems by Michel Raynal Pdf

Distributed computing is at the heart of many applications. It arises as soon as one has to solve a problem in terms of entities -- such as processes, peers, processors, nodes, or agents -- that individually have only a partial knowledge of the many input parameters associated with the problem. In particular each entity cooperating towards the common goal cannot have an instantaneous knowledge of the current state of the other entities. Whereas parallel computing is mainly concerned with 'efficiency', and real-time computing is mainly concerned with 'on-time computing', distributed computing is mainly concerned with 'mastering uncertainty' created by issues such as the multiplicity of control flows, asynchronous communication, unstable behaviors, mobility, and dynamicity. While some distributed algorithms consist of a few lines only, their behavior can be difficult to understand and their properties hard to state and prove. The aim of this book is to present in a comprehensive way the basic notions, concepts, and algorithms of distributed computing when the distributed entities cooperate by sending and receiving messages on top of an asynchronous network. The book is composed of seventeen chapters structured into six parts: distributed graph algorithms, in particular what makes them different from sequential or parallel algorithms; logical time and global states, the core of the book; mutual exclusion and resource allocation; high-level communication abstractions; distributed detection of properties; and distributed shared memory. The author establishes clear objectives per chapter and the content is supported throughout with illustrative examples, summaries, exercises, and annotated bibliographies. This book constitutes an introduction to distributed computing and is suitable for advanced undergraduate students or graduate students in computer science and computer engineering, graduate students in mathematics interested in distributed computing, and practitioners and engineers involved in the design and implementation of distributed applications. The reader should have a basic knowledge of algorithms and operating systems.

Fault-Tolerant Message-Passing Distributed Systems

Author : Michel Raynal
Publisher : Springer
Page : 459 pages
File Size : 55,5 Mb
Release : 2018-09-08
Category : Computers
ISBN : 9783319941417

Get Book

Fault-Tolerant Message-Passing Distributed Systems by Michel Raynal Pdf

This book presents the most important fault-tolerant distributed programming abstractions and their associated distributed algorithms, in particular in terms of reliable communication and agreement, which lie at the heart of nearly all distributed applications. These programming abstractions, distributed objects or services, allow software designers and programmers to cope with asynchrony and the most important types of failures such as process crashes, message losses, and malicious behaviors of computing entities, widely known under the term "Byzantine fault-tolerance". The author introduces these notions in an incremental manner, starting from a clear specification, followed by algorithms which are first described intuitively and then proved correct. The book also presents impossibility results in classic distributed computing models, along with strategies, mainly failure detectors and randomization, that allow us to enrich these models. In this sense, the book constitutes an introduction to the science of distributed computing, with applications in all domains of distributed systems, such as cloud computing and blockchains. Each chapter comes with exercises and bibliographic notes to help the reader approach, understand, and master the fascinating field of fault-tolerant distributed computing.

An Introduction to Distributed Algorithms

Author : Valmir C. Barbosa
Publisher : MIT Press
Page : 390 pages
File Size : 48,7 Mb
Release : 1996
Category : Computers
ISBN : 0262024128

Get Book

An Introduction to Distributed Algorithms by Valmir C. Barbosa Pdf

An Introduction to Distributed Algorithms takes up some of the main concepts and algorithms, ranging from basic to advanced techniques and applications, that underlie the programming of distributed-memory systems such as computer networks, networks of work-stations, and multiprocessors. Written from the broad perspective of distributed-memory systems in general it includes topics such as algorithms for maximum flow, programme debugging, and simulation that do not appear in more orthodox texts on distributed algorithms.

Fault-tolerant Message-passing Distributed Systems

Author : Michel Raynal
Publisher : Unknown
Page : 459 pages
File Size : 47,5 Mb
Release : 2018
Category : Electronic data processing
ISBN : 3319941429

Get Book

Fault-tolerant Message-passing Distributed Systems by Michel Raynal Pdf

This book presents the most important fault-tolerant distributed programming abstractions and their associated distributed algorithms, in particular in terms of reliable communication and agreement, which lie at the heart of nearly all distributed applications. These programming abstractions, distributed objects or services, allow software designers and programmers to cope with asynchrony and the most important types of failures such as process crashes, message losses, and malicious behaviors of computing entities, widely known under the term "Byzantine fault-tolerance". The author introduces these notions in an incremental manner, starting from a clear specification, followed by algorithms which are first described intuitively and then proved correct. The book also presents impossibility results in classic distributed computing models, along with strategies, mainly failure detectors and randomization, that allow us to enrich these models. In this sense, the book constitutes an introduction to the science of distributed computing, with applications in all domains of distributed systems, such as cloud computing and blockchains. Each chapter comes with exercises and bibliographic notes to help the reader approach, understand, and master the fascinating field of fault-tolerant distributed computing.

Introduction to Distributed Algorithms

Author : Gerard Tel
Publisher : Cambridge University Press
Page : 612 pages
File Size : 46,6 Mb
Release : 2000-09-28
Category : Computers
ISBN : 0521794838

Get Book

Introduction to Distributed Algorithms by Gerard Tel Pdf

Introduction : distributed systems - The model - Communication protocols - Routing algorithms - Deadlock-free packet switching - Wave and traversal algorithms - Election algorithms - Termination detection - Anonymous networks - Snapshots - Sense of direction and orientation - Synchrony in networks - Fault tolerance in distributed systems - Fault tolerance in asynchronous systems - Fault tolerance in synchronous systems - Failure detection - Stabilization.

Fault-tolerant Agreement in Synchronous Message-passing Systems

Author : Michel Raynal
Publisher : Morgan & Claypool Publishers
Page : 189 pages
File Size : 51,9 Mb
Release : 2010-06-06
Category : Technology & Engineering
ISBN : 9781608455263

Get Book

Fault-tolerant Agreement in Synchronous Message-passing Systems by Michel Raynal Pdf

Understanding distributed computing is not an easy task. This is due to the many facets of uncertainty one has to cope with and master in order to produce correct distributed software. A previous book Communication and Agreement Abstraction for Fault-tolerant Asynchronous Distributed Systems (published by Morgan & Claypool, 2010) was devoted to the problems created by crash failures in asynchronous message-passing systems. The present book focuses on the way to cope with the uncertainty created by process failures (crash, omission failures and Byzantine behavior) in synchronous message-passing systems (i.e., systems whose progress is governed by the passage of time). To that end, the book considers fundamental problems that distributed synchronous processes have to solve. These fundamental problems concern agreement among processes (if processes are unable to agree in one way or another in presence of failures, no non-trivial problem can be solved). They are consensus, interactive consistency, k-set agreement and non-blocking atomic commit. Being able to solve these basic problems efficiently with provable guarantees allows applications designers to give a precise meaning to the words "cooperate" and "agree" despite failures, and write distributed synchronous programs with properties that can be stated and proved. Hence, the aim of the book is to present a comprehensive view of agreement problems, algorithms that solve them and associated computability bounds in synchronous message-passing distributed systems. Table of Contents: List of Figures / Synchronous Model, Failure Models, and Agreement Problems / Consensus and Interactive Consistency in the Crash Failure Model / Expedite Decision in the Crash Failure Model / Simultaneous Consensus Despite Crash Failures / From Consensus to k-Set Agreement / Non-Blocking Atomic Commit in Presence of Crash Failures / k-Set Agreement Despite Omission Failures / Consensus Despite Byzantine Failures / Byzantine Consensus in Enriched Models

Distributed Algorithms

Author : Marios Mavronicolas,Philippas Tsigas
Publisher : Springer Science & Business Media
Page : 356 pages
File Size : 43,5 Mb
Release : 1997-09-10
Category : Computers
ISBN : 3540635750

Get Book

Distributed Algorithms by Marios Mavronicolas,Philippas Tsigas Pdf

This book constitutes the refereed proceedings of the 11th International Workshop on Distributed Algorithms, WDAG '97, held in Saarbrücken, Germany, in September 1997. The volume presents 20 revised full papers selected from 59 submissions. Also included are three invited papers by leading researchers. The papers address a variety of current issues in the area of distributed algorithms and, more generally, distributed systems such as various particular algorithms, randomized computing, routing, networking, load balancing, scheduling, message-passing, shared-memory systems, communication, graph algorithms, etc.

Distributed Algorithms

Author : Özalp Babaoglu,Keith Marzullo
Publisher : Springer Science & Business Media
Page : 396 pages
File Size : 51,5 Mb
Release : 1996-09-25
Category : Computers
ISBN : 3540617698

Get Book

Distributed Algorithms by Özalp Babaoglu,Keith Marzullo Pdf

Microsystem technology (MST) integrates very small (up to a few nanometers) mechanical, electronic, optical, and other components on a substrate to construct functional devices. These devices are used as intelligent sensors, actuators, and controllers for medical, automotive, household and many other purposes. This book is a basic introduction to MST for students, engineers, and scientists. It is the first of its kind to cover MST in its entirety. It gives a comprehensive treatment of all important parts of MST such as microfabrication technologies, microactuators, microsensors, development and testing of microsystems, and information processing in microsystems. It surveys products built to date and experimental products and gives a comprehensive view of all developments leading to MST devices and robots.

Distributed Algorithms

Author : Fourré Sigs
Publisher : Independently Published
Page : 354 pages
File Size : 40,6 Mb
Release : 2019-01-31
Category : Electronic
ISBN : 1795464429

Get Book

Distributed Algorithms by Fourré Sigs Pdf

AN ELABORATE YET BEGINNER-FRIENDLY GUIDE TO DISTRIBUTED ALGORITHMS Distributed Algorithms, a non-trivial and highly evolving field of active research, is often presented in most publications using a heavy accompaniment of mathematical techniques and notations. Aimed squarely at beginners as well as experienced practitioners, this book attempts to demystify and explicate the subject of distributed algorithms using a highly expansive and verbose style of treatment. Covering scores of landmark algorithms in the field of distributed computing, the approach is to present and analyse each topic using a minimum of mathematical exposition, reverting instead to a fluid style of description in plain English. A mathematical presentation is avoided altogether whenever such a move does not reduce the quality of the analysis at hand. Elsewhere, the effort always is to talk and guide the reader through the relevant math without resorting to a series of equations. To backup such a style of treatment, each topic is accompanied by a multitude of examples, flowcharts, and diagrams. The book is divided into three parts; the first part deals with fundamentals, the second and largest of the three is all about algorithms specific to message passing networks, while the last one focuses on shared memory algorithms. The beginning of the book dedicates a few chapters to the basics - including a quick orientation on the underlying platform, i.e. distributed systems, their characteristics, advantages, challenges, and so on. Some of the earlier chapters also address basic algorithms and techniques relevant to distributed computing environments before moving on to progressively complex algorithms and results - en route to the later chapters in the second part which deal with widely used 'industrial-strength' protocols such as Paxos and Raft. The third part of the book does assume a basic orientation towards computer programming, and presents numerous shared memory algorithms where each one is accompanied by a detailed description, analysis, pseudo code, and in some cases, code (C or C++). Whenever actual code is used, the syntax is kept as basic as possible - incorporating only elementary features of the language - so that newbie programmers can follow the presentation smoothly. Lastly, the target audience of the book is wide enough to cover beginners such as students or graduates joining the industry, experienced professionals wishing to migrate from monolithic frameworks to distributed ones, as well as readers with years of experience on the subject of distributed computing. The style of presentation is selected with the first two classes of readers in mind: those who wish to quickly ramp up on the subject of distributed algorithms for professional reasons or personal ones. While staying true to the stated aim, the book does not shy away from dealing with complex topics. A concise list of content information follows: Introduction to distributed systems Properties of distributed data stores and Brewer's theorem Building blocks: unicast, broadcast, algorithms in cubes Leader election algorithms: for ring/generic networks Consensus algorithms: synchronous/asynchronous variants for message passing and shared memory systems Distributed commits, Paxos, Raft Graph algorithms Routing algorithms Time and order Mutual exclusion: for message passing networks Debug algorithms: snapshot, deadlock/termination detection Shared memory: practical problems, mutual exclusion, consensus, resource allocation About the author Fourré Sigs is an industry veteran with over 25 years of experience in systems programming, networking, and highly scalable and secure distributed service architectures.

Distributed Algorithms

Author : Wan Fokkink
Publisher : MIT Press
Page : 242 pages
File Size : 48,9 Mb
Release : 2013-12-06
Category : Computers
ISBN : 9780262026772

Get Book

Distributed Algorithms by Wan Fokkink Pdf

A comprehensive guide to distributed algorithms that emphasizes examples and exercises rather than mathematical argumentation.

Link Reversal Algorithms

Author : Jennifer Welch,Jennifer Walter
Publisher : Springer Nature
Page : 93 pages
File Size : 54,9 Mb
Release : 2022-05-31
Category : Computers
ISBN : 9783031020063

Get Book

Link Reversal Algorithms by Jennifer Welch,Jennifer Walter Pdf

Link reversal is a versatile algorithm design technique that has been used in numerous distributed algorithms for a variety of problems. The common thread in these algorithms is that the distributed system is viewed as a graph, with vertices representing the computing nodes and edges representing some other feature of the system (for instance, point-to-point communication channels or a conflict relationship). Each algorithm assigns a virtual direction to the edges of the graph, producing a directed version of the original graph. As the algorithm proceeds, the virtual directions of some of the links in the graph change in order to accomplish some algorithm-specific goal. The criterion for changing link directions is based on information that is local to a node (such as the node having no outgoing links) and thus this approach scales well, a feature that is desirable for distributed algorithms. This monograph presents, in a tutorial way, a representative sampling of the work on link-reversal-based distributed algorithms. The algorithms considered solve routing, leader election, mutual exclusion, distributed queueing, scheduling, and resource allocation. The algorithms can be roughly divided into two types, those that assume a more abstract graph model of the networks, and those that take into account more realistic details of the system. In particular, these more realistic details include the communication between nodes, which may be through asynchronous message passing, and possible changes in the graph, for instance, due to movement of the nodes. We have not attempted to provide a comprehensive survey of all the literature on these topics. Instead, we have focused in depth on a smaller number of fundamental papers, whose common thread is that link reversal provides a way for nodes in the system to observe their local neighborhoods, take only local actions, and yet cause global problems to be solved. We conjecture that future interesting uses of link reversal are yet to be discovered. Table of Contents: Introduction / Routing in a Graph: Correctness / Routing in a Graph: Complexity / Routing and Leader Election in a Distributed System / Mutual Exclusion in a Distributed System / Distributed Queueing / Scheduling in a Graph / Resource Allocation in a Distributed System / Conclusion

Introduction to Reliable and Secure Distributed Programming

Author : Christian Cachin,Rachid Guerraoui,Luís Rodrigues
Publisher : Springer Science & Business Media
Page : 367 pages
File Size : 46,9 Mb
Release : 2011-02-11
Category : Computers
ISBN : 9783642152603

Get Book

Introduction to Reliable and Secure Distributed Programming by Christian Cachin,Rachid Guerraoui,Luís Rodrigues Pdf

In modern computing a program is usually distributed among several processes. The fundamental challenge when developing reliable and secure distributed programs is to support the cooperation of processes required to execute a common task, even when some of these processes fail. Failures may range from crashes to adversarial attacks by malicious processes. Cachin, Guerraoui, and Rodrigues present an introductory description of fundamental distributed programming abstractions together with algorithms to implement them in distributed systems, where processes are subject to crashes and malicious attacks. The authors follow an incremental approach by first introducing basic abstractions in simple distributed environments, before moving to more sophisticated abstractions and more challenging environments. Each core chapter is devoted to one topic, covering reliable broadcast, shared memory, consensus, and extensions of consensus. For every topic, many exercises and their solutions enhance the understanding This book represents the second edition of "Introduction to Reliable Distributed Programming". Its scope has been extended to include security against malicious actions by non-cooperating processes. This important domain has become widely known under the name "Byzantine fault-tolerance".

Link Reversal Algorithms

Author : Jennifer Welch,Jennifer Walter
Publisher : Morgan & Claypool Publishers
Page : 105 pages
File Size : 46,8 Mb
Release : 2011-11-11
Category : Technology & Engineering
ISBN : 9781608450428

Get Book

Link Reversal Algorithms by Jennifer Welch,Jennifer Walter Pdf

Link reversal is a versatile algorithm design technique that has been used in numerous distributed algorithms for a variety of problems. The common thread in these algorithms is that the distributed system is viewed as a graph, with vertices representing the computing nodes and edges representing some other feature of the system (for instance, point-to-point communication channels or a conflict relationship). Each algorithm assigns a virtual direction to the edges of the graph, producing a directed version of the original graph. As the algorithm proceeds, the virtual directions of some of the links in the graph change in order to accomplish some algorithm-specific goal. The criterion for changing link directions is based on information that is local to a node (such as the node having no outgoing links) and thus this approach scales well, a feature that is desirable for distributed algorithms. This monograph presents, in a tutorial way, a representative sampling of the work on link-reversal-based distributed algorithms. The algorithms considered solve routing, leader election, mutual exclusion, distributed queueing, scheduling, and resource allocation. The algorithms can be roughly divided into two types, those that assume a more abstract graph model of the networks, and those that take into account more realistic details of the system. In particular, these more realistic details include the communication between nodes, which may be through asynchronous message passing, and possible changes in the graph, for instance, due to movement of the nodes. We have not attempted to provide a comprehensive survey of all the literature on these topics. Instead, we have focused in depth on a smaller number of fundamental papers, whose common thread is that link reversal provides a way for nodes in the system to observe their local neighborhoods, take only local actions, and yet cause global problems to be solved. We conjecture that future interesting uses of link reversal are yet to be discovered. Table of Contents: Introduction / Routing in a Graph: Correctness / Routing in a Graph: Complexity / Routing and Leader Election in a Distributed System / Mutual Exclusion in a Distributed System / Distributed Queueing / Scheduling in a Graph / Resource Allocation in a Distributed System / Conclusion

Introduction to Distributed Self-Stabilizing Algorithms

Author : Karine Altisen,Stéphane Devismes,Swan Dubois,Franck Petit
Publisher : Springer Nature
Page : 147 pages
File Size : 46,9 Mb
Release : 2022-05-31
Category : Computers
ISBN : 9783031020131

Get Book

Introduction to Distributed Self-Stabilizing Algorithms by Karine Altisen,Stéphane Devismes,Swan Dubois,Franck Petit Pdf

This book aims at being a comprehensive and pedagogical introduction to the concept of self-stabilization, introduced by Edsger Wybe Dijkstra in 1973. Self-stabilization characterizes the ability of a distributed algorithm to converge within finite time to a configuration from which its behavior is correct (i.e., satisfies a given specification), regardless the arbitrary initial configuration of the system. This arbitrary initial configuration may be the result of the occurrence of a finite number of transient faults. Hence, self-stabilization is actually considered as a versatile non-masking fault tolerance approach, since it recovers from the effect of any finite number of such faults in an unified manner. Another major interest of such an automatic recovery method comes from the difficulty of resetting malfunctioning devices in a large-scale (and so, geographically spread) distributed system (the Internet, Pair-to-Pair networks, and Delay Tolerant Networks are examples of such distributed systems). Furthermore, self-stabilization is usually recognized as a lightweight property to achieve fault tolerance as compared to other classical fault tolerance approaches. Indeed, the overhead, both in terms of time and space, of state-of-the-art self-stabilizing algorithms is commonly small. This makes self-stabilization very attractive for distributed systems equipped of processes with low computational and memory capabilities, such as wireless sensor networks. After more than 40 years of existence, self-stabilization is now sufficiently established as an important field of research in theoretical distributed computing to justify its teaching in advanced research-oriented graduate courses. This book is an initiation course, which consists of the formal definition of self-stabilization and its related concepts, followed by a deep review and study of classical (simple) algorithms, commonly used proof schemes and design patterns, as well as premium results issued from the self-stabilizing community. As often happens in the self-stabilizing area, in this book we focus on the proof of correctness and the analytical complexity of the studied distributed self-stabilizing algorithms. Finally, we underline that most of the algorithms studied in this book are actually dedicated to the high-level atomic-state model, which is the most commonly used computational model in the self-stabilizing area. However, in the last chapter, we present general techniques to achieve self-stabilization in the low-level message passing model, as well as example algorithms.