Foundations Of Quantum Programming

Foundations Of Quantum Programming Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Foundations Of Quantum Programming book. This book definitely worth reading, it is an incredibly well-written.

Foundations of Quantum Programming

Author : Mingsheng Ying
Publisher : Elsevier
Page : 474 pages
File Size : 51,5 Mb
Release : 2024-05-01
Category : Computers
ISBN : 9780443159435

Get Book

Foundations of Quantum Programming by Mingsheng Ying Pdf

Quantum computers promise dramatic advantages in processing speed over currently available computer systems. Quantum computing offers great promise in a wide variety of computing and scientific research, including Quantum cryptography, machine learning, computational biology, renewable energy, computer-aided drug design, generative chemistry, and any scientific or enterprise application that requires computation speed or reach beyond the limits of current conventional computer systems. Foundations of Quantum Programming, Second Edition discusses how programming methodologies and technologies developed for current computers can be extended for quantum computers, along with new programming methodologies and technologies that can effectively exploit the unique power of quantum computing. The Second Edition includes two new chapters describing programming models and methodologies for parallel and distributed quantum computers. The author has also included two new chapters to introduce Quantum Machine Learning and its programming models – parameterized and differential quantum programming. In addition, the First Edition's preliminaries chapter has been split into three chapters, with two sections for quantum Turing machines and random access stored program machines added to give the reader a more complete picture of quantum computational models. Finally, several other new techniques are introduced in the Second Edition, including invariants of quantum programs and their generation algorithms, and abstract interpretation of quantum programs. Demystifies the theory of quantum programming using a step-by-step approach Includes methodologies, techniques, and tools for the development, analysis, and verification of quantum programs and quantum cryptographic protocols Covers the interdisciplinary nature of quantum programming by providing preliminaries from quantum mechanics, mathematics, and computer science, and pointing out its potential applications to quantum engineering and physics Presents a coherent and self-contained treatment that will be valuable for academic and industrial researchers and developers Adds new developments such as parallel and distributed quantum programming; and introduces several new program analysis techniques such as invariants generation and abstract interpretation

Fundamentals of Quantum Programming in IBM's Quantum Computers

Author : Weng-Long Chang,Athanasios V. Vasilakos
Publisher : Springer Nature
Page : 354 pages
File Size : 54,7 Mb
Release : 2020-12-21
Category : Computers
ISBN : 9783030635831

Get Book

Fundamentals of Quantum Programming in IBM's Quantum Computers by Weng-Long Chang,Athanasios V. Vasilakos Pdf

This textbook introduces major topics that include quantum bits, superposition, entanglement, logic gates, quantum search algorithm, quantum Fourier transform, inverse quantum Fourier transform, Shor’s order-finding algorithm and phase estimation. Everyone can write algorithms and programs in the cloud making using IBM’s quantum computers that support IBM Q Experience which contains the composer, open quantum assembly language, simulators and real quantum devices. Furthermore, this book teaches you how to use open quantum assembly language to write quantum programs for dealing with complex problems. Through numerous examples and exercises, readers will learn how to write a quantum program with open quantum assembly language for solving any problem from start to complete. This book includes six main chapters: ·Quantum Bits and Quantum Gates—learn what quantum bits are, how to declare and measure them, what quantum gates are and how they work on a simulator or a real device in the cloud. ·Boolean Algebra and its Applications—learn how to decompose CCNOT gate into six CNOT gates and nine gates of one bit and how to use NOT gates, CNOT gates and CCNOT gates to implement logic operations including NOT, OR, AND, NOR, NAND, Exclusive-OR (XOR) and Exclusive-NOR (XNOR). ·Quantum Search Algorithm and its Applications—learn core concepts of quantum search algorithm and how to write quantum programs to implement core concepts of quantum search algorithm for solving two famous NP-complete problems that are the satisfiability problem in n Boolean variables and m clauses and the clique problem in a graph with n vertices and q edges. ·Quantum Fourier Transform and its Applications—learn core concepts of quantum Fourier transform and inverse quantum Fourier transform and how to write quantum programs to implement them for solving two real applications that are to compute the period and the frequency of two given oracular functions. ·Order-Finding and Factoring—learn core concepts of Shor’s order-finding algorithm and how to write quantum programs to implement Shor’s order-finding algorithm for completing the prime factorization to 15. Phase Estimation and its Applications—learn core concepts of phase estimation and quantum counting and how to write quantum programs to implement them to compute the number of solution(s) in the independent set problem in a graph with two vertices and one edge.

Fundamentals of Quantum Computing

Author : Venkateswaran Kasirajan
Publisher : Springer Nature
Page : 463 pages
File Size : 41,9 Mb
Release : 2021-06-21
Category : Computers
ISBN : 9783030636890

Get Book

Fundamentals of Quantum Computing by Venkateswaran Kasirajan Pdf

This introductory book on quantum computing includes an emphasis on the development of algorithms. Appropriate for both university students as well as software developers interested in programming a quantum computer, this practical approach to modern quantum computing takes the reader through the required background and up to the latest developments. Beginning with introductory chapters on the required math and quantum mechanics, Fundamentals of Quantum Computing proceeds to describe four leading qubit modalities and explains the core principles of quantum computing in detail. Providing a step-by-step derivation of math and source code, some of the well-known quantum algorithms are explained in simple ways so the reader can try them either on IBM Q or Microsoft QDK. The book also includes a chapter on adiabatic quantum computing and modern concepts such as topological quantum computing and surface codes. Features: o Foundational chapters that build the necessary background on math and quantum mechanics. o Examples and illustrations throughout provide a practical approach to quantum programming with end-of-chapter exercises. o Detailed treatment on four leading qubit modalities -- trapped-ion, superconducting transmons, topological qubits, and quantum dots -- teaches how qubits work so that readers can understand how quantum computers work under the hood and devise efficient algorithms and error correction codes. Also introduces protected qubits - 0-π qubits, fluxon parity protected qubits, and charge-parity protected qubits. o Principles of quantum computing, such as quantum superposition principle, quantum entanglement, quantum teleportation, no-cloning theorem, quantum parallelism, and quantum interference are explained in detail. A dedicated chapter on quantum algorithm explores both oracle-based, and Quantum Fourier Transform-based algorithms in detail with step-by-step math and working code that runs on IBM QisKit and Microsoft QDK. Topics on EPR Paradox, Quantum Key Distribution protocols, Density Matrix formalism, and Stabilizer formalism are intriguing. While focusing on the universal gate model of quantum computing, this book also introduces adiabatic quantum computing and quantum annealing. This book includes a section on fault-tolerant quantum computing to make the discussions complete. The topics on Quantum Error Correction, Surface codes such as Toric code and Planar code, and protected qubits help explain how fault tolerance can be built at the system level.

Quantum Computing: An Applied Approach

Author : Jack D. Hidary
Publisher : Springer Nature
Page : 422 pages
File Size : 45,5 Mb
Release : 2021-09-29
Category : Science
ISBN : 9783030832742

Get Book

Quantum Computing: An Applied Approach by Jack D. Hidary Pdf

This book integrates the foundations of quantum computing with a hands-on coding approach to this emerging field; it is the first to bring these elements together in an updated manner. This work is suitable for both academic coursework and corporate technical training. The second edition includes extensive updates and revisions, both to textual content and to the code. Sections have been added on quantum machine learning, quantum error correction, Dirac notation and more. This new edition benefits from the input of the many faculty, students, corporate engineering teams, and independent readers who have used the first edition. This volume comprises three books under one cover: Part I outlines the necessary foundations of quantum computing and quantum circuits. Part II walks through the canon of quantum computing algorithms and provides code on a range of quantum computing methods in current use. Part III covers the mathematical toolkit required to master quantum computing. Additional resources include a table of operators and circuit elements and a companion GitHub site providing code and updates. Jack D. Hidary is a research scientist in quantum computing and in AI at Alphabet X, formerly Google X.

Programming Quantum Computers

Author : Eric R. Johnston,Nic Harrigan,Mercedes Gimeno-Segovia
Publisher : O'Reilly Media
Page : 333 pages
File Size : 54,9 Mb
Release : 2019-07-03
Category : Computers
ISBN : 9781492039655

Get Book

Programming Quantum Computers by Eric R. Johnston,Nic Harrigan,Mercedes Gimeno-Segovia Pdf

Quantum computers are set to kick-start a second computing revolution in an exciting and intriguing way. Learning to program a Quantum Processing Unit (QPU) is not only fun and exciting, but it's a way to get your foot in the door. Like learning any kind of programming, the best way to proceed is by getting your hands dirty and diving into code. This practical book uses publicly available quantum computing engines, clever notation, and a programmer’s mindset to get you started. You'll be able to build up the intuition, skills, and tools needed to start writing quantum programs and solve problems that you care about.

Learn Quantum Computing with Python and Q#

Author : Sarah C. Kaiser,Christopher Grenade
Publisher : Simon and Schuster
Page : 545 pages
File Size : 42,9 Mb
Release : 2021-07-27
Category : Computers
ISBN : 9781638350903

Get Book

Learn Quantum Computing with Python and Q# by Sarah C. Kaiser,Christopher Grenade Pdf

Learn Quantum Computing with Python and Q# introduces quantum computing from a practical perspective. Summary Learn Quantum Computing with Python and Q# demystifies quantum computing. Using Python and the new quantum programming language Q#, you’ll build your own quantum simulator and apply quantum programming techniques to real-world examples including cryptography and chemical analysis. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Quantum computers present a radical leap in speed and computing power. Improved scientific simulations and new frontiers in cryptography that are impossible with classical computing may soon be in reach. Microsoft’s Quantum Development Kit and the Q# language give you the tools to experiment with quantum computing without knowing advanced math or theoretical physics. About the book Learn Quantum Computing with Python and Q# introduces quantum computing from a practical perspective. Use Python to build your own quantum simulator and take advantage of Microsoft’s open source tools to fine-tune quantum algorithms. The authors explain complex math and theory through stories, visuals, and games. You’ll learn to apply quantum to real-world applications, such as sending secret messages and solving chemistry problems. What's inside The underlying mechanics of quantum computers Simulating qubits in Python Exploring quantum algorithms with Q# Applying quantum computing to chemistry, arithmetic, and data About the reader For software developers. No prior experience with quantum computing required. About the author Dr. Sarah Kaiser works at the Unitary Fund, a non-profit organization supporting the quantum open-source ecosystem, and is an expert in building quantum tech in the lab. Dr. Christopher Granade works in the Quantum Systems group at Microsoft, and is an expert in characterizing quantum devices. Table of Contents PART 1 GETTING STARTED WITH QUANTUM 1 Introducing quantum computing 2 Qubits: The building blocks 3 Sharing secrets with quantum key distribution 4 Nonlocal games: Working with multiple qubits 5 Nonlocal games: Implementing a multi-qubit simulator 6 Teleportation and entanglement: Moving quantum data around PART 2 PROGRAMMING QUANTUM ALGORITHMS IN Q# 7 Changing the odds: An introduction to Q# 8 What is a quantum algorithm? 9 Quantum sensing: It’s not just a phase PART 3 APPLIED QUANTUM COMPUTING 10 Solving chemistry problems with quantum computers 11 Searching with quantum computers 12 Arithmetic with quantum computers

Programming Quantum Computers

Author : Eric R. Johnston,Nic Harrigan,Mercedes Gimeno-Segovia
Publisher : "O'Reilly Media, Inc."
Page : 336 pages
File Size : 53,7 Mb
Release : 2019-07-03
Category : Computers
ISBN : 9781492039631

Get Book

Programming Quantum Computers by Eric R. Johnston,Nic Harrigan,Mercedes Gimeno-Segovia Pdf

Quantum computers are poised to kick-start a new computing revolution—and you can join in right away. If you’re in software engineering, computer graphics, data science, or just an intrigued computerphile, this book provides a hands-on programmer’s guide to understanding quantum computing. Rather than labor through math and theory, you’ll work directly with examples that demonstrate this technology’s unique capabilities. Quantum computing specialists Eric Johnston, Nic Harrigan, and Mercedes Gimeno-Segovia show you how to build the skills, tools, and intuition required to write quantum programs at the center of applications. You’ll understand what quantum computers can do and learn how to identify the types of problems they can solve. This book includes three multichapter sections: Programming for a QPU—Explore core concepts for programming quantum processing units, including how to describe and manipulate qubits and how to perform quantum teleportation. QPU Primitives—Learn algorithmic primitives and techniques, including amplitude amplification, the Quantum Fourier Transform, and phase estimation. QPU Applications—Investigate how QPU primitives are used to build existing applications, including quantum search techniques and Shor’s factoring algorithm.

Quantum Computing for Programmers

Author : Robert Hundt
Publisher : Cambridge University Press
Page : 375 pages
File Size : 45,6 Mb
Release : 2022-03-31
Category : Computers
ISBN : 9781009098175

Get Book

Quantum Computing for Programmers by Robert Hundt Pdf

Takes readers from the basics to detailed derivations and open-source implementations of more than 25 fundamental quantum algorithms.

Practical Quantum Computing for Developers

Author : Vladimir Silva
Publisher : Apress
Page : 358 pages
File Size : 44,6 Mb
Release : 2018-12-12
Category : Computers
ISBN : 9781484242186

Get Book

Practical Quantum Computing for Developers by Vladimir Silva Pdf

Write algorithms and program in the new field of quantum computing. This book covers major topics such as the physical components of a quantum computer: qubits, entanglement, logic gates, circuits, and how they differ from a traditional computer. Also, Practical Quantum Computing for Developers discusses quantum computing in the cloud using IBM Q Experience including: the composer, quantum scores, experiments, circuits, simulators, real quantum devices, and more. You’ll be able to run experiments in the cloud on a real quantum device. Furthermore, this book shows you how to do quantum programming using the QISKit (Quantum Information Software Kit), Python SDK, and other APIs such as QASM (Quantum Assembly). You’ll learn to write code using these languages and execute it against simulators (local or remote) or a real quantum computer provided by IBM’s Q Experience. Finally, you’ll learn the current quantum algorithms for entanglement, random number generation, linear search, integer factorization, and others. You’ll peak inside the inner workings of the Bell states for entanglement, Grover’s algorithm for linear search, Shor’s algorithm for integer factorization, and other algorithms in the fields of optimization, and more. Along the way you’ll also cover game theory with the Magic Square, an example of quantum pseudo-telepathy where parties sharing entangled states can be observed to have some kind of communication between them. In this game Alice and Bob play against a referee. Quantum mechanics allows Alice and Bob to always win! By the end of this book, you will understand how this emerging technology provides massive parallelism and significant computational speedups over classical computers, and will be prepared to program quantum computers which are expected to replace traditional computers in the data center. What You Will LearnUse the Q Experience Composer, the first-of-its-kind web console to create visual programs/experiments and submit them to a quantum simulator or real device on the cloud Run programs remotely using the Q Experience REST API Write algorithms that provide superior performance over their classical counterparts Build a Node.js REST client for authenticating, listing remote devices, querying information about quantum processors, and listing or running experiments remotely in the cloud Create a quantum number generator: The quintessential coin flip with a quantum twist Discover quantum teleportation: This algorithm demonstrates how the exact state of a qubit (quantum information) can be transmitted from one location to another, with the help of classical communication and quantum entanglement between the sender and receiver Peek into single qubit operations with the classic game of Battleships with a quantum twist Handle the counterfeit coin problem: a classic puzzle that consists of finding a counterfeit coin in a beam balance among eight coins in only two turns Who This Book Is For Developers and programmers interested in this new field of computing.

The Theory of Quantum Information

Author : John Watrous
Publisher : Unknown
Page : 599 pages
File Size : 45,9 Mb
Release : 2018-04-26
Category : Computers
ISBN : 9781107180567

Get Book

The Theory of Quantum Information by John Watrous Pdf

Formal development of the mathematical theory of quantum information with clear proofs and exercises. For graduate students and researchers.

Model Checking Quantum Systems

Author : Mingsheng Ying,Yuan Feng
Publisher : Cambridge University Press
Page : 223 pages
File Size : 55,8 Mb
Release : 2021-02-04
Category : Computers
ISBN : 9781108484305

Get Book

Model Checking Quantum Systems by Mingsheng Ying,Yuan Feng Pdf

The first book introducing computer aided verification techniques for quantum systems with quantum computing and communication hardware.

High-Level Structures for Quantum Computing

Author : Jaroslaw Miszczak
Publisher : Morgan & Claypool Publishers
Page : 131 pages
File Size : 52,6 Mb
Release : 2012-06-01
Category : Science
ISBN : 9781608458523

Get Book

High-Level Structures for Quantum Computing by Jaroslaw Miszczak Pdf

This book is concerned with the models of quantum computation. Information processing based on the rules of quantum mechanics provides us with new opportunities for developing more efficient algorithms and protocols. However, to harness the power offered by quantum information processing it is essential to control the behavior of quantum mechanical objects in a precise manner. As this seems to be conceptually difficult at the level of quantum states and unitary gates, high-level quantum programming languages have been proposed for this purpose. The aim of this book is to provide an introduction to abstract models of computation used in quantum information theory. Starting from the abstract models of Turing machine and finite automata, we introduce the models of Boolean circuits and Random Access Machine and use them to present quantum programming techniques and quantum programming languages. Table of Contents: Introduction / Turing machines / Quantum Finite State Automata / Computational Circuits / Random Access Machines / Quantum Programming Environment / Quantum Programming Languages / Imperative quantum programming / Functional Quantum Programming / Outlook

Practical Foundations for Programming Languages

Author : Robert Harper
Publisher : Cambridge University Press
Page : 513 pages
File Size : 55,9 Mb
Release : 2016-04-04
Category : Computers
ISBN : 9781107150300

Get Book

Practical Foundations for Programming Languages by Robert Harper Pdf

This book unifies a broad range of programming language concepts under the framework of type systems and structural operational semantics.

Quantum Computing Since Democritus

Author : Scott Aaronson
Publisher : Cambridge University Press
Page : 403 pages
File Size : 49,7 Mb
Release : 2013-03-14
Category : Computers
ISBN : 9780521199568

Get Book

Quantum Computing Since Democritus by Scott Aaronson Pdf

Takes students and researchers on a tour through some of the deepest ideas of maths, computer science and physics.

Foundations of Quantum Mechanics

Author : Reinhold Blumel
Publisher : Jones & Bartlett Learning
Page : 344 pages
File Size : 40,9 Mb
Release : 2010
Category : Medical
ISBN : 9780763776282

Get Book

Foundations of Quantum Mechanics by Reinhold Blumel Pdf

Quantum computers are the proposed centerpieces of a revolutionary, 21st-century quantum information technology. This book takes the reader into the world of quantum mechanics and continues on an in-depth study of quantum information and quantum computing, including the future of quantum technology. This text focuses on what is "quantum" about quantum mechanics; topics discussed include the EPR paradox, entanglement, teleportation, Bell's Theorem, quantum computing, and code-breaking with quantum computers.--Back cover.