Machine Learning For Big Data Analysis

Machine Learning For Big Data Analysis Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Machine Learning For Big Data Analysis book. This book definitely worth reading, it is an incredibly well-written.

Machine Learning for Big Data Analysis

Author : Siddhartha Bhattacharyya,Hrishikesh Bhaumik,Anirban Mukherjee,Sourav De
Publisher : Walter de Gruyter GmbH & Co KG
Page : 246 pages
File Size : 47,8 Mb
Release : 2018-12-17
Category : Computers
ISBN : 9783110550771

Get Book

Machine Learning for Big Data Analysis by Siddhartha Bhattacharyya,Hrishikesh Bhaumik,Anirban Mukherjee,Sourav De Pdf

This volume comprises six well-versed contributed chapters devoted to report the latest fi ndings on the applications of machine learning for big data analytics. Big data is a term for data sets that are so large or complex that traditional data processing application software is inadequate to deal with them. The possible challenges in this direction include capture, storage, analysis, data curation, search, sharing, transfer, visualization, querying, updating and information privacy. Big data analytics is the process of examining large and varied data sets - i.e., big data - to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful information that can help organizations make more-informed business decisions. This volume is intended to be used as a reference by undergraduate and post graduate students of the disciplines of computer science, electronics and telecommunication, information science and electrical engineering. THE SERIES: FRONTIERS IN COMPUTATIONAL INTELLIGENCE The series Frontiers In Computational Intelligence is envisioned to provide comprehensive coverage and understanding of cutting edge research in computational intelligence. It intends to augment the scholarly discourse on all topics relating to the advances in artifi cial life and machine learning in the form of metaheuristics, approximate reasoning, and robotics. Latest research fi ndings are coupled with applications to varied domains of engineering and computer sciences. This field is steadily growing especially with the advent of novel machine learning algorithms being applied to different domains of engineering and technology. The series brings together leading researchers that intend to continue to advance the fi eld and create a broad knowledge about the most recent research.

Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges

Author : Aboul Ella Hassanien,Ashraf Darwish
Publisher : Springer Nature
Page : 648 pages
File Size : 47,8 Mb
Release : 2020-12-14
Category : Computers
ISBN : 9783030593384

Get Book

Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges by Aboul Ella Hassanien,Ashraf Darwish Pdf

This book is intended to present the state of the art in research on machine learning and big data analytics. The accepted chapters covered many themes including artificial intelligence and data mining applications, machine learning and applications, deep learning technology for big data analytics, and modeling, simulation, and security with big data. It is a valuable resource for researchers in the area of big data analytics and its applications.

Applications of Machine Learning in Big-Data Analytics and Cloud Computing

Author : Subhendu Kumar Pani,Somanath Tripathy,George Jandieri,Sumit Kundu,Talal Ashraf Butt
Publisher : CRC Press
Page : 346 pages
File Size : 51,5 Mb
Release : 2022-09-01
Category : Technology & Engineering
ISBN : 9781000793550

Get Book

Applications of Machine Learning in Big-Data Analytics and Cloud Computing by Subhendu Kumar Pani,Somanath Tripathy,George Jandieri,Sumit Kundu,Talal Ashraf Butt Pdf

Cloud Computing and Big Data technologies have become the new descriptors of the digital age. The global amount of digital data has increased more than nine times in volume in just five years and by 2030 its volume may reach a staggering 65 trillion gigabytes. This explosion of data has led to opportunities and transformation in various areas such as healthcare, enterprises, industrial manufacturing and transportation. New Cloud Computing and Big Data tools endow researchers and analysts with novel techniques and opportunities to collect, manage and analyze the vast quantities of data. In Cloud and Big Data Analytics, the two areas of Swarm Intelligence and Deep Learning are a developing type of Machine Learning techniques that show enormous potential for solving complex business problems. Deep Learning enables computers to analyze large quantities of unstructured and binary data and to deduce relationships without requiring specific models or programming instructions. This book introduces the state-of-the-art trends and advances in the use of Machine Learning in Cloud and Big Data Analytics. The book will serve as a reference for Data Scientists, systems architects, developers, new researchers and graduate level students in Computer and Data science. The book will describe the concepts necessary to understand current Machine Learning issues, challenges and possible solutions as well as upcoming trends in Big Data Analytics.

Deep Learning: Convergence to Big Data Analytics

Author : Murad Khan,Bilal Jan,Haleem Farman
Publisher : Springer
Page : 79 pages
File Size : 47,9 Mb
Release : 2018-12-30
Category : Computers
ISBN : 9789811334597

Get Book

Deep Learning: Convergence to Big Data Analytics by Murad Khan,Bilal Jan,Haleem Farman Pdf

This book presents deep learning techniques, concepts, and algorithms to classify and analyze big data. Further, it offers an introductory level understanding of the new programming languages and tools used to analyze big data in real-time, such as Hadoop, SPARK, and GRAPHX. Big data analytics using traditional techniques face various challenges, such as fast, accurate and efficient processing of big data in real-time. In addition, the Internet of Things is progressively increasing in various fields, like smart cities, smart homes, and e-health. As the enormous number of connected devices generate huge amounts of data every day, we need sophisticated algorithms to deal, organize, and classify this data in less processing time and space. Similarly, existing techniques and algorithms for deep learning in big data field have several advantages thanks to the two main branches of the deep learning, i.e. convolution and deep belief networks. This book offers insights into these techniques and applications based on these two types of deep learning. Further, it helps students, researchers, and newcomers understand big data analytics based on deep learning approaches. It also discusses various machine learning techniques in concatenation with the deep learning paradigm to support high-end data processing, data classifications, and real-time data processing issues. The classification and presentation are kept quite simple to help the readers and students grasp the basics concepts of various deep learning paradigms and frameworks. It mainly focuses on theory rather than the mathematical background of the deep learning concepts. The book consists of 5 chapters, beginning with an introductory explanation of big data and deep learning techniques, followed by integration of big data and deep learning techniques and lastly the future directions.

Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics

Author : Pradeep N,Sandeep Kautish,Sheng-Lung Peng
Publisher : Academic Press
Page : 374 pages
File Size : 47,8 Mb
Release : 2021-06-10
Category : Science
ISBN : 9780128220443

Get Book

Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics by Pradeep N,Sandeep Kautish,Sheng-Lung Peng Pdf

Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics presents the changing world of data utilization, especially in clinical healthcare. Various techniques, methodologies, and algorithms are presented in this book to organize data in a structured manner that will assist physicians in the care of patients and help biomedical engineers and computer scientists understand the impact of these techniques on healthcare analytics. The book is divided into two parts: Part 1 covers big data aspects such as healthcare decision support systems and analytics-related topics. Part 2 focuses on the current frameworks and applications of deep learning and machine learning, and provides an outlook on future directions of research and development. The entire book takes a case study approach, providing a wealth of real-world case studies in the application chapters to act as a foundational reference for biomedical engineers, computer scientists, healthcare researchers, and clinicians. Provides a comprehensive reference for biomedical engineers, computer scientists, advanced industry practitioners, researchers, and clinicians to understand and develop healthcare analytics using advanced tools and technologies Includes in-depth illustrations of advanced techniques via dataset samples, statistical tables, and graphs with algorithms and computational methods for developing new applications in healthcare informatics Unique case study approach provides readers with insights for practical clinical implementation

Machine Learning for Big Data Analysis

Author : Siddhartha Bhattacharyya,Hrishikesh Bhaumik,Anirban Mukherjee,Sourav De
Publisher : Walter de Gruyter GmbH & Co KG
Page : 193 pages
File Size : 53,6 Mb
Release : 2018-12-17
Category : Computers
ISBN : 9783110551433

Get Book

Machine Learning for Big Data Analysis by Siddhartha Bhattacharyya,Hrishikesh Bhaumik,Anirban Mukherjee,Sourav De Pdf

This volume comprises six well-versed contributed chapters devoted to report the latest fi ndings on the applications of machine learning for big data analytics. Big data is a term for data sets that are so large or complex that traditional data processing application software is inadequate to deal with them. The possible challenges in this direction include capture, storage, analysis, data curation, search, sharing, transfer, visualization, querying, updating and information privacy. Big data analytics is the process of examining large and varied data sets - i.e., big data - to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful information that can help organizations make more-informed business decisions. This volume is intended to be used as a reference by undergraduate and post graduate students of the disciplines of computer science, electronics and telecommunication, information science and electrical engineering. THE SERIES: FRONTIERS IN COMPUTATIONAL INTELLIGENCE The series Frontiers In Computational Intelligence is envisioned to provide comprehensive coverage and understanding of cutting edge research in computational intelligence. It intends to augment the scholarly discourse on all topics relating to the advances in artifi cial life and machine learning in the form of metaheuristics, approximate reasoning, and robotics. Latest research fi ndings are coupled with applications to varied domains of engineering and computer sciences. This field is steadily growing especially with the advent of novel machine learning algorithms being applied to different domains of engineering and technology. The series brings together leading researchers that intend to continue to advance the fi eld and create a broad knowledge about the most recent research.

Deep Learning in Data Analytics

Author : Debi Prasanna Acharjya,Anirban Mitra,Noor Zaman
Publisher : Springer Nature
Page : 271 pages
File Size : 48,9 Mb
Release : 2021-08-11
Category : Technology & Engineering
ISBN : 9783030758554

Get Book

Deep Learning in Data Analytics by Debi Prasanna Acharjya,Anirban Mitra,Noor Zaman Pdf

This book comprises theoretical foundations to deep learning, machine learning and computing system, deep learning algorithms, and various deep learning applications. The book discusses significant issues relating to deep learning in data analytics. Further in-depth reading can be done from the detailed bibliography presented at the end of each chapter. Besides, this book's material includes concepts, algorithms, figures, graphs, and tables in guiding researchers through deep learning in data science and its applications for society. Deep learning approaches prevent loss of information and hence enhance the performance of data analysis and learning techniques. It brings up many research issues in the industry and research community to capture and access data effectively. The book provides the conceptual basis of deep learning required to achieve in-depth knowledge in computer and data science. It has been done to make the book more flexible and to stimulate further interest in topics. All these help researchers motivate towards learning and implementing the concepts in real-life applications.

Machine Learning Models and Algorithms for Big Data Classification

Author : Shan Suthaharan
Publisher : Springer
Page : 359 pages
File Size : 42,8 Mb
Release : 2015-10-20
Category : Business & Economics
ISBN : 9781489976413

Get Book

Machine Learning Models and Algorithms for Big Data Classification by Shan Suthaharan Pdf

This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach), and deep learning (a layered approach) are highly suitable for the system that can handle such problems. This book helps readers, especially students and newcomers to the field of big data and machine learning, to gain a quick understanding of the techniques and technologies; therefore, the theory, examples, and programs (Matlab and R) presented in this book have been simplified, hardcoded, repeated, or spaced for improvements. They provide vehicles to test and understand the complicated concepts of various topics in the field. It is expected that the readers adopt these programs to experiment with the examples, and then modify or write their own programs toward advancing their knowledge for solving more complex and challenging problems. The presentation format of this book focuses on simplicity, readability, and dependability so that both undergraduate and graduate students as well as new researchers, developers, and practitioners in this field can easily trust and grasp the concepts, and learn them effectively. It has been written to reduce the mathematical complexity and help the vast majority of readers to understand the topics and get interested in the field. This book consists of four parts, with the total of 14 chapters. The first part mainly focuses on the topics that are needed to help analyze and understand data and big data. The second part covers the topics that can explain the systems required for processing big data. The third part presents the topics required to understand and select machine learning techniques to classify big data. Finally, the fourth part concentrates on the topics that explain the scaling-up machine learning, an important solution for modern big data problems.

Big Data, Data Mining, and Machine Learning

Author : Jared Dean
Publisher : John Wiley & Sons
Page : 293 pages
File Size : 44,6 Mb
Release : 2014-05-07
Category : Computers
ISBN : 9781118920701

Get Book

Big Data, Data Mining, and Machine Learning by Jared Dean Pdf

With big data analytics comes big insights into profitability Big data is big business. But having the data and the computational power to process it isn't nearly enough to produce meaningful results. Big Data, Data Mining, and Machine Learning: Value Creation for Business Leaders and Practitioners is a complete resource for technology and marketing executives looking to cut through the hype and produce real results that hit the bottom line. Providing an engaging, thorough overview of the current state of big data analytics and the growing trend toward high performance computing architectures, the book is a detail-driven look into how big data analytics can be leveraged to foster positive change and drive efficiency. With continued exponential growth in data and ever more competitive markets, businesses must adapt quickly to gain every competitive advantage available. Big data analytics can serve as the linchpin for initiatives that drive business, but only if the underlying technology and analysis is fully understood and appreciated by engaged stakeholders. This book provides a view into the topic that executives, managers, and practitioners require, and includes: A complete overview of big data and its notable characteristics Details on high performance computing architectures for analytics, massively parallel processing (MPP), and in-memory databases Comprehensive coverage of data mining, text analytics, and machine learning algorithms A discussion of explanatory and predictive modeling, and how they can be applied to decision-making processes Big Data, Data Mining, and Machine Learning provides technology and marketing executives with the complete resource that has been notably absent from the veritable libraries of published books on the topic. Take control of your organization's big data analytics to produce real results with a resource that is comprehensive in scope and light on hyperbole.

Big Data Analysis: New Algorithms for a New Society

Author : Nathalie Japkowicz,Jerzy Stefanowski
Publisher : Springer
Page : 329 pages
File Size : 48,9 Mb
Release : 2015-12-16
Category : Technology & Engineering
ISBN : 9783319269894

Get Book

Big Data Analysis: New Algorithms for a New Society by Nathalie Japkowicz,Jerzy Stefanowski Pdf

This edited volume is devoted to Big Data Analysis from a Machine Learning standpoint as presented by some of the most eminent researchers in this area. It demonstrates that Big Data Analysis opens up new research problems which were either never considered before, or were only considered within a limited range. In addition to providing methodological discussions on the principles of mining Big Data and the difference between traditional statistical data analysis and newer computing frameworks, this book presents recently developed algorithms affecting such areas as business, financial forecasting, human mobility, the Internet of Things, information networks, bioinformatics, medical systems and life science. It explores, through a number of specific examples, how the study of Big Data Analysis has evolved and how it has started and will most likely continue to affect society. While the benefits brought upon by Big Data Analysis are underlined, the book also discusses some of the warnings that have been issued concerning the potential dangers of Big Data Analysis along with its pitfalls and challenges.

Deep Learning Techniques and Optimization Strategies in Big Data Analytics

Author : Thomas, J. Joshua,Karagoz, Pinar,Ahamed, B. Bazeer,Vasant, Pandian
Publisher : IGI Global
Page : 355 pages
File Size : 51,5 Mb
Release : 2019-11-29
Category : Computers
ISBN : 9781799811947

Get Book

Deep Learning Techniques and Optimization Strategies in Big Data Analytics by Thomas, J. Joshua,Karagoz, Pinar,Ahamed, B. Bazeer,Vasant, Pandian Pdf

Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there’s a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.

Big Data and Machine Learning in Quantitative Investment

Author : Tony Guida
Publisher : John Wiley & Sons
Page : 308 pages
File Size : 50,8 Mb
Release : 2019-03-25
Category : Business & Economics
ISBN : 9781119522195

Get Book

Big Data and Machine Learning in Quantitative Investment by Tony Guida Pdf

Get to know the ‘why’ and ‘how’ of machine learning and big data in quantitative investment Big Data and Machine Learning in Quantitative Investment is not just about demonstrating the maths or the coding. Instead, it’s a book by practitioners for practitioners, covering the questions of why and how of applying machine learning and big data to quantitative finance. The book is split into 13 chapters, each of which is written by a different author on a specific case. The chapters are ordered according to the level of complexity; beginning with the big picture and taxonomy, moving onto practical applications of machine learning and finally finishing with innovative approaches using deep learning. • Gain a solid reason to use machine learning • Frame your question using financial markets laws • Know your data • Understand how machine learning is becoming ever more sophisticated Machine learning and big data are not a magical solution, but appropriately applied, they are extremely effective tools for quantitative investment — and this book shows you how.

Machine Learning and Big Data

Author : Uma N. Dulhare,Khaleel Ahmad,Khairol Amali Bin Ahmad
Publisher : John Wiley & Sons
Page : 544 pages
File Size : 44,7 Mb
Release : 2020-09-01
Category : Computers
ISBN : 9781119654742

Get Book

Machine Learning and Big Data by Uma N. Dulhare,Khaleel Ahmad,Khairol Amali Bin Ahmad Pdf

This book is intended for academic and industrial developers, exploring and developing applications in the area of big data and machine learning, including those that are solving technology requirements, evaluation of methodology advances and algorithm demonstrations. The intent of this book is to provide awareness of algorithms used for machine learning and big data in the academic and professional community. The 17 chapters are divided into 5 sections: Theoretical Fundamentals; Big Data and Pattern Recognition; Machine Learning: Algorithms & Applications; Machine Learning's Next Frontier and Hands-On and Case Study. While it dwells on the foundations of machine learning and big data as a part of analytics, it also focuses on contemporary topics for research and development. In this regard, the book covers machine learning algorithms and their modern applications in developing automated systems. Subjects covered in detail include: Mathematical foundations of machine learning with various examples. An empirical study of supervised learning algorithms like Naïve Bayes, KNN and semi-supervised learning algorithms viz. S3VM, Graph-Based, Multiview. Precise study on unsupervised learning algorithms like GMM, K-mean clustering, Dritchlet process mixture model, X-means and Reinforcement learning algorithm with Q learning, R learning, TD learning, SARSA Learning, and so forth. Hands-on machine leaning open source tools viz. Apache Mahout, H2O. Case studies for readers to analyze the prescribed cases and present their solutions or interpretations with intrusion detection in MANETS using machine learning. Showcase on novel user-cases: Implications of Electronic Governance as well as Pragmatic Study of BD/ML technologies for agriculture, healthcare, social media, industry, banking, insurance and so on.

Big Data

Author : Balamurugan Balusamy,Nandhini Abirami R,Seifedine Kadry,Amir H. Gandomi
Publisher : John Wiley & Sons
Page : 368 pages
File Size : 44,7 Mb
Release : 2021-03-15
Category : Mathematics
ISBN : 9781119701873

Get Book

Big Data by Balamurugan Balusamy,Nandhini Abirami R,Seifedine Kadry,Amir H. Gandomi Pdf

Learn Big Data from the ground up with this complete and up-to-date resource from leaders in the field Big Data: Concepts, Technology, and Architecture delivers a comprehensive treatment of Big Data tools, terminology, and technology perfectly suited to a wide range of business professionals, academic researchers, and students. Beginning with a fulsome overview of what we mean when we say, “Big Data,” the book moves on to discuss every stage of the lifecycle of Big Data. You’ll learn about the creation of structured, unstructured, and semi-structured data, data storage solutions, traditional database solutions like SQL, data processing, data analytics, machine learning, and data mining. You’ll also discover how specific technologies like Apache Hadoop, SQOOP, and Flume work. Big Data also covers the central topic of big data visualization with Tableau, and you’ll learn how to create scatter plots, histograms, bar, line, and pie charts with that software. Accessibly organized, Big Data includes illuminating case studies throughout the material, showing you how the included concepts have been applied in real-world settings. Some of those concepts include: The common challenges facing big data technology and technologists, like data heterogeneity and incompleteness, data volume and velocity, storage limitations, and privacy concerns Relational and non-relational databases, like RDBMS, NoSQL, and NewSQL databases Virtualizing Big Data through encapsulation, partitioning, and isolating, as well as big data server virtualization Apache software, including Hadoop, Cassandra, Avro, Pig, Mahout, Oozie, and Hive The Big Data analytics lifecycle, including business case evaluation, data preparation, extraction, transformation, analysis, and visualization Perfect for data scientists, data engineers, and database managers, Big Data also belongs on the bookshelves of business intelligence analysts who are required to make decisions based on large volumes of information. Executives and managers who lead teams responsible for keeping or understanding large datasets will also benefit from this book.

Big Data Analytics Methods

Author : Peter Ghavami
Publisher : Walter de Gruyter GmbH & Co KG
Page : 282 pages
File Size : 42,9 Mb
Release : 2019-12-16
Category : Business & Economics
ISBN : 9781547401581

Get Book

Big Data Analytics Methods by Peter Ghavami Pdf

Big Data Analytics Methods unveils secrets to advanced analytics techniques ranging from machine learning, random forest classifiers, predictive modeling, cluster analysis, natural language processing (NLP), Kalman filtering and ensembles of models for optimal accuracy of analysis and prediction. More than 100 analytics techniques and methods provide big data professionals, business intelligence professionals and citizen data scientists insight on how to overcome challenges and avoid common pitfalls and traps in data analytics. The book offers solutions and tips on handling missing data, noisy and dirty data, error reduction and boosting signal to reduce noise. It discusses data visualization, prediction, optimization, artificial intelligence, regression analysis, the Cox hazard model and many analytics using case examples with applications in the healthcare, transportation, retail, telecommunication, consulting, manufacturing, energy and financial services industries. This book's state of the art treatment of advanced data analytics methods and important best practices will help readers succeed in data analytics.