Machine Learning Models And Algorithms For Big Data Classification

Machine Learning Models And Algorithms For Big Data Classification Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Machine Learning Models And Algorithms For Big Data Classification book. This book definitely worth reading, it is an incredibly well-written.

Machine Learning Models and Algorithms for Big Data Classification

Author : Shan Suthaharan
Publisher : Springer
Page : 359 pages
File Size : 41,7 Mb
Release : 2015-10-20
Category : Business & Economics
ISBN : 9781489976413

Get Book

Machine Learning Models and Algorithms for Big Data Classification by Shan Suthaharan Pdf

This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach), and deep learning (a layered approach) are highly suitable for the system that can handle such problems. This book helps readers, especially students and newcomers to the field of big data and machine learning, to gain a quick understanding of the techniques and technologies; therefore, the theory, examples, and programs (Matlab and R) presented in this book have been simplified, hardcoded, repeated, or spaced for improvements. They provide vehicles to test and understand the complicated concepts of various topics in the field. It is expected that the readers adopt these programs to experiment with the examples, and then modify or write their own programs toward advancing their knowledge for solving more complex and challenging problems. The presentation format of this book focuses on simplicity, readability, and dependability so that both undergraduate and graduate students as well as new researchers, developers, and practitioners in this field can easily trust and grasp the concepts, and learn them effectively. It has been written to reduce the mathematical complexity and help the vast majority of readers to understand the topics and get interested in the field. This book consists of four parts, with the total of 14 chapters. The first part mainly focuses on the topics that are needed to help analyze and understand data and big data. The second part covers the topics that can explain the systems required for processing big data. The third part presents the topics required to understand and select machine learning techniques to classify big data. Finally, the fourth part concentrates on the topics that explain the scaling-up machine learning, an important solution for modern big data problems.

Data Classification

Author : Charu C. Aggarwal
Publisher : CRC Press
Page : 710 pages
File Size : 51,6 Mb
Release : 2014-07-25
Category : Business & Economics
ISBN : 9781466586741

Get Book

Data Classification by Charu C. Aggarwal Pdf

Comprehensive Coverage of the Entire Area of Classification Research on the problem of classification tends to be fragmented across such areas as pattern recognition, database, data mining, and machine learning. Addressing the work of these different communities in a unified way, Data Classification: Algorithms and Applications explores the underlying algorithms of classification as well as applications of classification in a variety of problem domains, including text, multimedia, social network, and biological data. This comprehensive book focuses on three primary aspects of data classification: Methods-The book first describes common techniques used for classification, including probabilistic methods, decision trees, rule-based methods, instance-based methods, support vector machine methods, and neural networks. Domains-The book then examines specific methods used for data domains such as multimedia, text, time-series, network, discrete sequence, and uncertain data. It also covers large data sets and data streams due to the recent importance of the big data paradigm. Variations-The book concludes with insight on variations of the classification process. It discusses ensembles, rare-class learning, distance function learning, active learning, visual learning, transfer learning, and semi-supervised learning as well as evaluation aspects of classifiers.

Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics

Author : R. Sujatha,S. L. Aarthy,R. Vettriselvan
Publisher : CRC Press
Page : 216 pages
File Size : 42,7 Mb
Release : 2021-09-22
Category : Technology & Engineering
ISBN : 9781000454536

Get Book

Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics by R. Sujatha,S. L. Aarthy,R. Vettriselvan Pdf

Data science revolves around two giants: Big Data analytics and Deep Learning. It is becoming challenging to handle and retrieve useful information due to how fast data is expanding. This book presents the technologies and tools to simplify and streamline the formation of Big Data as well as Deep Learning systems. This book discusses how Big Data and Deep Learning hold the potential to significantly increase data understanding and decision-making. It also covers numerous applications in healthcare, education, communication, media, and entertainment. Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics offers innovative platforms for integrating Big Data and Deep Learning and presents issues related to adequate data storage, semantic indexing, data tagging, and fast information retrieval. FEATURES Provides insight into the skill set that leverages one’s strength to act as a good data analyst Discusses how Big Data and Deep Learning hold the potential to significantly increase data understanding and help in decision-making Covers numerous potential applications in healthcare, education, communication, media, and entertainment Offers innovative platforms for integrating Big Data and Deep Learning Presents issues related to adequate data storage, semantic indexing, data tagging, and fast information retrieval from Big Data This book is aimed at industry professionals, academics, research scholars, system modelers, and simulation experts.

Deep Learning: Convergence to Big Data Analytics

Author : Murad Khan,Bilal Jan,Haleem Farman
Publisher : Springer
Page : 79 pages
File Size : 52,6 Mb
Release : 2018-12-30
Category : Computers
ISBN : 9789811334597

Get Book

Deep Learning: Convergence to Big Data Analytics by Murad Khan,Bilal Jan,Haleem Farman Pdf

This book presents deep learning techniques, concepts, and algorithms to classify and analyze big data. Further, it offers an introductory level understanding of the new programming languages and tools used to analyze big data in real-time, such as Hadoop, SPARK, and GRAPHX. Big data analytics using traditional techniques face various challenges, such as fast, accurate and efficient processing of big data in real-time. In addition, the Internet of Things is progressively increasing in various fields, like smart cities, smart homes, and e-health. As the enormous number of connected devices generate huge amounts of data every day, we need sophisticated algorithms to deal, organize, and classify this data in less processing time and space. Similarly, existing techniques and algorithms for deep learning in big data field have several advantages thanks to the two main branches of the deep learning, i.e. convolution and deep belief networks. This book offers insights into these techniques and applications based on these two types of deep learning. Further, it helps students, researchers, and newcomers understand big data analytics based on deep learning approaches. It also discusses various machine learning techniques in concatenation with the deep learning paradigm to support high-end data processing, data classifications, and real-time data processing issues. The classification and presentation are kept quite simple to help the readers and students grasp the basics concepts of various deep learning paradigms and frameworks. It mainly focuses on theory rather than the mathematical background of the deep learning concepts. The book consists of 5 chapters, beginning with an introductory explanation of big data and deep learning techniques, followed by integration of big data and deep learning techniques and lastly the future directions.

Pro Machine Learning Algorithms

Author : V Kishore Ayyadevara
Publisher : Apress
Page : 379 pages
File Size : 53,5 Mb
Release : 2018-06-30
Category : Computers
ISBN : 9781484235645

Get Book

Pro Machine Learning Algorithms by V Kishore Ayyadevara Pdf

Bridge the gap between a high-level understanding of how an algorithm works and knowing the nuts and bolts to tune your models better. This book will give you the confidence and skills when developing all the major machine learning models. In Pro Machine Learning Algorithms, you will first develop the algorithm in Excel so that you get a practical understanding of all the levers that can be tuned in a model, before implementing the models in Python/R. You will cover all the major algorithms: supervised and unsupervised learning, which include linear/logistic regression; k-means clustering; PCA; recommender system; decision tree; random forest; GBM; and neural networks. You will also be exposed to the latest in deep learning through CNNs, RNNs, and word2vec for text mining. You will be learning not only the algorithms, but also the concepts of feature engineering to maximize the performance of a model. You will see the theory along with case studies, such as sentiment classification, fraud detection, recommender systems, and image recognition, so that you get the best of both theory and practice for the vast majority of the machine learning algorithms used in industry. Along with learning the algorithms, you will also be exposed to running machine-learning models on all the major cloud service providers. You are expected to have minimal knowledge of statistics/software programming and by the end of this book you should be able to work on a machine learning project with confidence. What You Will Learn Get an in-depth understanding of all the major machine learning and deep learning algorithms Fully appreciate the pitfalls to avoid while building models Implement machine learning algorithms in the cloud Follow a hands-on approach through case studies for each algorithm Gain the tricks of ensemble learning to build more accurate models Discover the basics of programming in R/Python and the Keras framework for deep learning Who This Book Is For Business analysts/ IT professionals who want to transition into data science roles. Data scientists who want to solidify their knowledge in machine learning.

Machine Learning and Data Science Blueprints for Finance

Author : Hariom Tatsat,Sahil Puri,Brad Lookabaugh
Publisher : "O'Reilly Media, Inc."
Page : 432 pages
File Size : 54,7 Mb
Release : 2020-10-01
Category : Computers
ISBN : 9781492073000

Get Book

Machine Learning and Data Science Blueprints for Finance by Hariom Tatsat,Sahil Puri,Brad Lookabaugh Pdf

Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You’ll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You’ll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations

Machine Learning Algorithms for Data Scientists: An Overview

Author : Vinaitheerthan Renganathan
Publisher : Vinaitheerthan Renganathan
Page : 102 pages
File Size : 44,5 Mb
Release : 2021-06-02
Category : Computers
ISBN : 9789354737695

Get Book

Machine Learning Algorithms for Data Scientists: An Overview by Vinaitheerthan Renganathan Pdf

Machine Learning models are widely used in different fields such as Artificial Intelligence, Business, Clinical and Biological Sciences which includes self-driving cars, predictive models, disease prediction, genome sequencing, spam filtering, product recommendation, fraud detection and image recognition . It has gained importance due to its capabilities of handling large volume of data, prediction and classification accuracy and validation procedures. Machine Learning models are built on the basis of statistical and mathematical algorithms. One important aspect of machine learning is it does not stick to standard algorithm throughout modeling process instead it learns from the data over a period of time and improves the accuracy of the model. Classification and prediction tasks are carried out based on the characteristics, patterns and relationship of the features present in the data set. Machine learning model also forms the basis of Deep Learning models. Machine Learning models involve supervised learning, unsupervised learning, semi supervised learning and reinforcement learning algorithms. Data Scientists analyze, model and visualize data and provide actionable insights to the decision makers. Machine learning algorithms and tools help the data scientist to carry out these tasks with the help of software such R and Python. This book provides an overview of Machine Learning models, algorithms and its application in different fields through the use of R Software. It also provides short introduction to R software for the benefit of users. Author assumes the users have basic descriptive and inferential statistical knowledge which is essential for building Machine Learning models. Data sets used in the books can be downloaded from the author’s website.

Data Analytics and Machine Learning

Author : Pushpa Singh
Publisher : Springer Nature
Page : 357 pages
File Size : 43,8 Mb
Release : 2024-06-29
Category : Electronic
ISBN : 9789819704484

Get Book

Data Analytics and Machine Learning by Pushpa Singh Pdf

Fundamentals of Machine Learning for Predictive Data Analytics, second edition

Author : John D. Kelleher,Brian Mac Namee,Aoife D'Arcy
Publisher : MIT Press
Page : 853 pages
File Size : 42,9 Mb
Release : 2020-10-20
Category : Computers
ISBN : 9780262361101

Get Book

Fundamentals of Machine Learning for Predictive Data Analytics, second edition by John D. Kelleher,Brian Mac Namee,Aoife D'Arcy Pdf

The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.

Rule Based Systems for Big Data

Author : Han Liu,Alexander Gegov,Mihaela Cocea
Publisher : Springer
Page : 121 pages
File Size : 49,5 Mb
Release : 2015-09-09
Category : Technology & Engineering
ISBN : 9783319236964

Get Book

Rule Based Systems for Big Data by Han Liu,Alexander Gegov,Mihaela Cocea Pdf

The ideas introduced in this book explore the relationships among rule based systems, machine learning and big data. Rule based systems are seen as a special type of expert systems, which can be built by using expert knowledge or learning from real data. The book focuses on the development and evaluation of rule based systems in terms of accuracy, efficiency and interpretability. In particular, a unified framework for building rule based systems, which consists of the operations of rule generation, rule simplification and rule representation, is presented. Each of these operations is detailed using specific methods or techniques. In addition, this book also presents some ensemble learning frameworks for building ensemble rule based systems.

Machine Learning, Neural and Statistical Classification

Author : Donald Michie,D. J. Spiegelhalter,C. C. Taylor
Publisher : Prentice Hall
Page : 312 pages
File Size : 41,8 Mb
Release : 1994
Category : Computers
ISBN : UCSD:31822019003581

Get Book

Machine Learning, Neural and Statistical Classification by Donald Michie,D. J. Spiegelhalter,C. C. Taylor Pdf

Machine Learning Algorithms

Author : Giuseppe Bonaccorso
Publisher : Packt Publishing Ltd
Page : 360 pages
File Size : 54,6 Mb
Release : 2017-07-24
Category : Computers
ISBN : 9781785884511

Get Book

Machine Learning Algorithms by Giuseppe Bonaccorso Pdf

Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide About This Book Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide. Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation. Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide. Who This Book Is For This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here. What You Will Learn Acquaint yourself with important elements of Machine Learning Understand the feature selection and feature engineering process Assess performance and error trade-offs for Linear Regression Build a data model and understand how it works by using different types of algorithm Learn to tune the parameters of Support Vector machines Implement clusters to a dataset Explore the concept of Natural Processing Language and Recommendation Systems Create a ML architecture from scratch. In Detail As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge. In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously. On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem. Style and approach An easy-to-follow, step-by-step guide that will help you get to grips with real -world applications of Algorithms for Machine Learning.

Understanding Machine Learning

Author : Shai Shalev-Shwartz,Shai Ben-David
Publisher : Cambridge University Press
Page : 415 pages
File Size : 45,9 Mb
Release : 2014-05-19
Category : Computers
ISBN : 9781107057135

Get Book

Understanding Machine Learning by Shai Shalev-Shwartz,Shai Ben-David Pdf

Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Machine Learning

Author : Anonim
Publisher : BoD – Books on Demand
Page : 153 pages
File Size : 52,7 Mb
Release : 2021-12-22
Category : Computers
ISBN : 9781839694844

Get Book

Machine Learning by Anonim Pdf

Recent times are witnessing rapid development in machine learning algorithm systems, especially in reinforcement learning, natural language processing, computer and robot vision, image processing, speech, and emotional processing and understanding. In tune with the increasing importance and relevance of machine learning models, algorithms, and their applications, and with the emergence of more innovative uses–cases of deep learning and artificial intelligence, the current volume presents a few innovative research works and their applications in real-world, such as stock trading, medical and healthcare systems, and software automation. The chapters in the book illustrate how machine learning and deep learning algorithms and models are designed, optimized, and deployed. The volume will be useful for advanced graduate and doctoral students, researchers, faculty members of universities, practicing data scientists and data engineers, professionals, and consultants working on the broad areas of machine learning, deep learning, and artificial intelligence.

Machine Learning for Big Data Analysis

Author : Siddhartha Bhattacharyya,Hrishikesh Bhaumik,Anirban Mukherjee,Sourav De
Publisher : Walter de Gruyter GmbH & Co KG
Page : 193 pages
File Size : 44,6 Mb
Release : 2018-12-17
Category : Computers
ISBN : 9783110551433

Get Book

Machine Learning for Big Data Analysis by Siddhartha Bhattacharyya,Hrishikesh Bhaumik,Anirban Mukherjee,Sourav De Pdf

This volume comprises six well-versed contributed chapters devoted to report the latest fi ndings on the applications of machine learning for big data analytics. Big data is a term for data sets that are so large or complex that traditional data processing application software is inadequate to deal with them. The possible challenges in this direction include capture, storage, analysis, data curation, search, sharing, transfer, visualization, querying, updating and information privacy. Big data analytics is the process of examining large and varied data sets - i.e., big data - to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful information that can help organizations make more-informed business decisions. This volume is intended to be used as a reference by undergraduate and post graduate students of the disciplines of computer science, electronics and telecommunication, information science and electrical engineering. THE SERIES: FRONTIERS IN COMPUTATIONAL INTELLIGENCE The series Frontiers In Computational Intelligence is envisioned to provide comprehensive coverage and understanding of cutting edge research in computational intelligence. It intends to augment the scholarly discourse on all topics relating to the advances in artifi cial life and machine learning in the form of metaheuristics, approximate reasoning, and robotics. Latest research fi ndings are coupled with applications to varied domains of engineering and computer sciences. This field is steadily growing especially with the advent of novel machine learning algorithms being applied to different domains of engineering and technology. The series brings together leading researchers that intend to continue to advance the fi eld and create a broad knowledge about the most recent research.