Matlab

Matlab Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Matlab book. This book definitely worth reading, it is an incredibly well-written.

Essential MATLAB for Scientists and Engineers

Author : Brian D. Hahn
Publisher : Butterworth-Heinemann
Page : 304 pages
File Size : 55,6 Mb
Release : 2002
Category : Computers
ISBN : 9780750652407

Get Book

Essential MATLAB for Scientists and Engineers by Brian D. Hahn Pdf

"This completely revised new edition is based on the lastest version of MATLAB. New chapters cover handle graphics, graphical user interfaces (GUIs), structures and cell arrays, and importing/exporting data. The chapter on numerical methods now includes a general GUI-driver ODE solver."--Jacket.

Matlab - Modelling, Programming and Simulations

Author : Emilson Pereira Leite
Publisher : A B M Nasiruzzaman
Page : 436 pages
File Size : 41,8 Mb
Release : 2010
Category : Electronic
ISBN : 9789533071251

Get Book

Matlab - Modelling, Programming and Simulations by Emilson Pereira Leite Pdf

Accelerating MATLAB Performance

Author : Yair M. Altman
Publisher : CRC Press
Page : 785 pages
File Size : 42,6 Mb
Release : 2014-12-11
Category : Computers
ISBN : 9781482211306

Get Book

Accelerating MATLAB Performance by Yair M. Altman Pdf

The MATLAB® programming environment is often perceived as a platform suitable for prototyping and modeling but not for "serious" applications. One of the main complaints is that MATLAB is just too slow. Accelerating MATLAB Performance aims to correct this perception by describing multiple ways to greatly improve MATLAB program speed. Packed with thousands of helpful tips, it leaves no stone unturned, discussing every aspect of MATLAB. Ideal for novices and professionals alike, the book describes MATLAB performance in a scale and depth never before published. It takes a comprehensive approach to MATLAB performance, illustrating numerous ways to attain the desired speedup. The book covers MATLAB, CPU, and memory profiling and discusses various tradeoffs in performance tuning. It describes both the application of standard industry techniques in MATLAB, as well as methods that are specific to MATLAB such as using different data types or built-in functions. The book covers MATLAB vectorization, parallelization (implicit and explicit), optimization, memory management, chunking, and caching. It explains MATLAB’s memory model and details how it can be leveraged. It describes the use of GPU, MEX, FPGA, and other forms of compiled code, as well as techniques for speeding up deployed applications. It details specific tips for MATLAB GUI, graphics, and I/O. It also reviews a wide variety of utilities, libraries, and toolboxes that can help to improve performance. Sufficient information is provided to allow readers to immediately apply the suggestions to their own MATLAB programs. Extensive references are also included to allow those who wish to expand the treatment of a particular topic to do so easily. Supported by an active website, and numerous code examples, the book will help readers rapidly attain significant reductions in development costs and program run times.

A Guide to MATLAB

Author : Brian R. Hunt,Ronald L. Lipsman,Jonathan M. Rosenberg
Publisher : Cambridge University Press
Page : 348 pages
File Size : 44,7 Mb
Release : 2001-08-06
Category : Computers
ISBN : 052100859X

Get Book

A Guide to MATLAB by Brian R. Hunt,Ronald L. Lipsman,Jonathan M. Rosenberg Pdf

This book is a short, focused introduction to MATLAB and should be useful to both beginning and experienced users.

Biomedical Image Analysis Recipes in MATLAB

Author : Constantino Carlos Reyes-Aldasoro
Publisher : John Wiley & Sons
Page : 416 pages
File Size : 47,5 Mb
Release : 2015-06-22
Category : Technology & Engineering
ISBN : 9781118657553

Get Book

Biomedical Image Analysis Recipes in MATLAB by Constantino Carlos Reyes-Aldasoro Pdf

As its title suggests, this innovative book has been written for life scientists needing to analyse their data sets, and programmers, wanting a better understanding of the types of experimental images life scientists investigate on a regular basis. Each chapter presents one self-contained biomedical experiment to be analysed. Part I of the book presents its two basic ingredients: essential concepts of image analysis and Matlab. In Part II, algorithms and techniques are shown as series of "recipes" or solved examples that show how specific techniques are applied to a biomedical experiments like Western Blots, Histology, Scratch Wound Assays and Fluoresence. Each recipe begins with simple techniques that gradually advance in complexity. Part III presents some advanced techniques for the generation of publication quality figures. The book does not assume any computational or mathematical expertise. A practical, clearly-written introduction to biomedical image analysis that provides the tools for life scientists and engineers to use when solving problems in their own laboratories. Presents the basic concepts of MATLAB software and uses it throughout to show how it can execute flexible and powerful image analysis programs tailored to the specific needs of the problem. Within the context of four biomedical cases, it shows algorithms and techniques as series of "recipes", or solved examples that show how a particular technique is applied in a specific experiment. Companion website containing example datasets, MATLAB files and figures from the book.

MATLAB for Machine Learning

Author : Giuseppe Ciaburro
Publisher : Packt Publishing Ltd
Page : 374 pages
File Size : 52,7 Mb
Release : 2017-08-28
Category : Computers
ISBN : 9781788399395

Get Book

MATLAB for Machine Learning by Giuseppe Ciaburro Pdf

Extract patterns and knowledge from your data in easy way using MATLAB About This Book Get your first steps into machine learning with the help of this easy-to-follow guide Learn regression, clustering, classification, predictive analytics, artificial neural networks and more with MATLAB Understand how your data works and identify hidden layers in the data with the power of machine learning. Who This Book Is For This book is for data analysts, data scientists, students, or anyone who is looking to get started with machine learning and want to build efficient data processing and predicting applications. A mathematical and statistical background will really help in following this book well. What You Will Learn Learn the introductory concepts of machine learning. Discover different ways to transform data using SAS XPORT, import and export tools, Explore the different types of regression techniques such as simple & multiple linear regression, ordinary least squares estimation, correlations and how to apply them to your data. Discover the basics of classification methods and how to implement Naive Bayes algorithm and Decision Trees in the Matlab environment. Uncover how to use clustering methods like hierarchical clustering to grouping data using the similarity measures. Know how to perform data fitting, pattern recognition, and clustering analysis with the help of MATLAB Neural Network Toolbox. Learn feature selection and extraction for dimensionality reduction leading to improved performance. In Detail MATLAB is the language of choice for many researchers and mathematics experts for machine learning. This book will help you build a foundation in machine learning using MATLAB for beginners. You'll start by getting your system ready with t he MATLAB environment for machine learning and you'll see how to easily interact with the Matlab workspace. We'll then move on to data cleansing, mining and analyzing various data types in machine learning and you'll see how to display data values on a plot. Next, you'll get to know about the different types of regression techniques and how to apply them to your data using the MATLAB functions. You'll understand the basic concepts of neural networks and perform data fitting, pattern recognition, and clustering analysis. Finally, you'll explore feature selection and extraction techniques for dimensionality reduction for performance improvement. At the end of the book, you will learn to put it all together into real-world cases covering major machine learning algorithms and be comfortable in performing machine learning with MATLAB. Style and approach The book takes a very comprehensive approach to enhance your understanding of machine learning using MATLAB. Sufficient real-world examples and use cases are included in the book to help you grasp the concepts quickly and apply them easily in your day-to-day work.

A Guide to MATLAB Object-Oriented Programming

Author : Andy H. Register
Publisher : CRC Press
Page : 382 pages
File Size : 54,8 Mb
Release : 2007-05-14
Category : Computers
ISBN : 9781584889120

Get Book

A Guide to MATLAB Object-Oriented Programming by Andy H. Register Pdf

A Guide to MATLAB Object-Oriented Programming is the first book to deliver broad coverage of the documented and undocumented object-oriented features of MATLAB. Unlike the typical approach of other resources, this guide explains why each feature is important, demonstrates how each feature is used, and promotes an understanding of

Discrete Systems and Digital Signal Processing with MATLAB

Author : Taan S. ElAli,Taan ElAli
Publisher : CRC Press
Page : 688 pages
File Size : 54,8 Mb
Release : 2003-09-29
Category : Technology & Engineering
ISBN : 9780203487112

Get Book

Discrete Systems and Digital Signal Processing with MATLAB by Taan S. ElAli,Taan ElAli Pdf

Books on linear systems typically cover both discrete and continuous systems together in one book. However, with coverage of this magnitude, not enough information is presented on either of the two subjects. Discrete linear systems warrant a book of their own, and Discrete Systems and Digital Signal Processing with MATLAB provides just that. It offers comprehensive coverage of both discrete linear systems and signal processing in one volume. This detailed book is firmly rooted in basic mathematical principles, and it includes many problems solved first by using analytical tools, then by using MATLAB. Examples that illustrate the theoretical concepts are provided at the end of each chapter.

Numerical Computing with MATLAB

Author : Cleve B. Moler
Publisher : SIAM
Page : 340 pages
File Size : 54,7 Mb
Release : 2010-08-12
Category : Computers
ISBN : 9780898716603

Get Book

Numerical Computing with MATLAB by Cleve B. Moler Pdf

A revised textbook for introductory courses in numerical methods, MATLAB and technical computing, which emphasises the use of mathematical software.

MATLAB for Brain and Cognitive Scientists

Author : Mike X Cohen
Publisher : MIT Press
Page : 572 pages
File Size : 47,5 Mb
Release : 2017-05-12
Category : Science
ISBN : 9780262035828

Get Book

MATLAB for Brain and Cognitive Scientists by Mike X Cohen Pdf

An introduction to a popular programming language for neuroscience research, taking the reader from beginning to intermediate and advanced levels of MATLAB programming. MATLAB is one of the most popular programming languages for neuroscience and psychology research. Its balance of usability, visualization, and widespread use makes it one of the most powerful tools in a scientist's toolbox. In this book, Mike Cohen teaches brain scientists how to program in MATLAB, with a focus on applications most commonly used in neuroscience and psychology. Although most MATLAB tutorials will abandon users at the beginner's level, leaving them to sink or swim, MATLAB for Brain and Cognitive Scientists takes readers from beginning to intermediate and advanced levels of MATLAB programming, helping them gain real expertise in applications that they will use in their work. The book offers a mix of instructive text and rigorous explanations of MATLAB code along with programming tips and tricks. The goal is to teach the reader how to program data analyses in neuroscience and psychology. Readers will learn not only how to but also how not to program, with examples of bad code that they are invited to correct or improve. Chapters end with exercises that test and develop the skills taught in each chapter. Interviews with neuroscientists and cognitive scientists who have made significant contributions their field using MATLAB appear throughout the book. MATLAB for Brain and Cognitive Scientists is an essential resource for both students and instructors, in the classroom or for independent study.

Digital Signal Processing Using MATLAB

Author : Vinay K. Ingle,John G. Proakis
Publisher : Nelson Books
Page : 605 pages
File Size : 52,5 Mb
Release : 2007
Category : Digitale Signalverarbeitung - MATLAB
ISBN : 0495244414

Get Book

Digital Signal Processing Using MATLAB by Vinay K. Ingle,John G. Proakis Pdf

This supplement to any standard DSP text is one of the first books to successfully integrate the use of MATLAB® in the study of DSP concepts. In this book, MATLAB® is used as a computing tool to explore traditional DSP topics, and solve problems to gain insight. This greatly expands the range and complexity of problems that students can effectively study in the course. Since DSP applications are primarily algorithms implemented on a DSP processor or software, a fair amount of programming is required. Using interactive software such as MATLAB® makes it possible to place more emphasis on learning new and difficult concepts than on programming algorithms. Interesting practical examples are discussed and useful problems are explored. This updated second edition includes new homework problems and revises the scripts in the book, available functions, and m-files to MATLAB® V7.

Matlab

Author : Stormy Attaway
Publisher : Butterworth-Heinemann
Page : 560 pages
File Size : 43,5 Mb
Release : 2013-06-03
Category : Computers
ISBN : 9780124058934

Get Book

Matlab by Stormy Attaway Pdf

MatLab, Third Edition is the only book that gives a full introduction to programming in MATLAB combined with an explanation of the software’s powerful functions, enabling engineers to fully exploit its extensive capabilities in solving engineering problems. The book provides a systematic, step-by-step approach, building on concepts throughout the text, facilitating easier learning. Sections on common pitfalls and programming guidelines direct students towards best practice. The book is organized into 14 chapters, starting with programming concepts such as variables, assignments, input/output, and selection statements; moves onto loops; and then solves problems using both the ‘programming concept’ and the ‘power of MATLAB’ side-by-side. In-depth coverage is given to input/output, a topic that is fundamental to many engineering applications. Vectorized Code has been made into its own chapter, in order to emphasize the importance of using MATLAB efficiently. There are also expanded examples on low-level file input functions, Graphical User Interfaces, and use of MATLAB Version R2012b; modified and new end-of-chapter exercises; improved labeling of plots; and improved standards for variable names and documentation. This book will be a valuable resource for engineers learning to program and model in MATLAB, as well as for undergraduates in engineering and science taking a course that uses (or recommends) MATLAB. Presents programming concepts and MATLAB built-in functions side-by-side Systematic, step-by-step approach, building on concepts throughout the book, facilitating easier learning Sections on common pitfalls and programming guidelines direct students towards best practice

Matrix Theory and Applications with MATLAB

Author : Darald J. Hartfiel
Publisher : CRC Press
Page : 388 pages
File Size : 45,6 Mb
Release : 2000-11-28
Category : Mathematics
ISBN : 1584881089

Get Book

Matrix Theory and Applications with MATLAB by Darald J. Hartfiel Pdf

Designed for use in a second course on linear algebra, Matrix Theory and Applications with MATLAB covers the basics of the subject-from a review of matrix algebra through vector spaces to matrix calculus and unitary similarity-in a presentation that stresses insight, understanding, and applications. Among its most outstanding features is the integration of MATLAB throughout the text. Each chapter includes a MATLAB subsection that discusses the various commands used to do the computations in that section and offers code for the graphics and some algorithms used in the text. All of the material is presented from a matrix point of view with enough rigor for students to learn to compose arguments and proofs and adjust the material to cover other problems. The treatment includes optional subsections covering applications, and the final chapters move beyond basic matrix theory to discuss more advanced topics, such as decompositions, positive definite matrices, graphics, and topology. Filled with illustrations, examples, and exercises that reinforce understanding, Matrix Theory and Applications with MATLAB allows readers to experiment and visualize results in a way that no other text does. Its rigor, use of MATLAB, and focus on applications better prepares them to use the material in their future work and research, to extend the material, and perhaps obtain new results of their own.

Engineering Mathematics with MATLAB

Author : Won Y. Yang et. al
Publisher : Won Y. Yang
Page : 752 pages
File Size : 40,6 Mb
Release : 2019-02-01
Category : Antiques & Collectibles
ISBN : 9781138059337

Get Book

Engineering Mathematics with MATLAB by Won Y. Yang et. al Pdf

Chapter 1: Vectors and Matrices 1.1 Vectors 1.1.1 Geometry with Vector 1.1.2 Dot Product 1.1.3 Cross Product 1.1.4 Lines and Planes 1.1.5 Vector Space 1.1.6 Coordinate Systems 1.1.7 Gram-Schmidt Orthonolization 1.2 Matrices 1.2.1 Matrix Algebra 1.2.2 Rank and Row/Column Spaces 1.2.3 Determinant and Trace 1.2.4 Eigenvalues and Eigenvectors 1.2.5 Inverse of a Matrix 1.2.6 Similarity Transformation and Diagonalization 1.2.7 Special Matrices 1.2.8 Positive Definiteness 1.2.9 Matrix Inversion Lemma 1.2.10 LU, Cholesky, QR, and Singular Value Decompositions 1.2.11 Physical Meaning of Eigenvalues/Eigenvectors 1.3 Systems of Linear Equations 1.3.1 Nonsingular Case 1.3.2 Undetermined Case - Minimum-Norm Solution 1.3.3 Overdetermined Case - Least-Squares Error Solution 1.3.4 Gauss(ian) Elimination 1.3.5 RLS (Recursive Least Squares) Algorithm Problems Chapter 2: Vector Calculus 2.1 Derivatives 2.2 Vector Functions 2.3 Velocity and Acceleration 2.4 Divergence and Curl 2.5 Line Integrals and Path Independence 2.5.1 Line Integrals 2.5.2 Path Independence 2.6 Double Integrals 2.7 Green's Theorem 2.8 Surface Integrals 2.9 Stokes' Theorem 2.10 Triple Integrals 2.11 Divergence Theorem Problems Chapter 3: Ordinary Differential Equation 3.1 First-Order Differential Equations 3.1.1 Separable Equations 3.1.2 Exact Differential Equations and Integrating Factors 3.1.3 Linear First-Order Differential Equations 3.1.4 Nonlinear First-Order Differential Equations 3.1.5 Systems of First-Order Differential Equations 3.2 Higher-Order Differential Equations 3.2.1 Undetermined Coefficients 3.2.2 Variation of Parameters 3.2.3 Cauchy-Euler Equations 3.2.4 Systems of Linear Differential Equations 3.3 Special Second-Order Linear ODEs 3.3.1 Bessel's Equation 3.3.2 Legendre's Equation 3.3.3 Chebyshev's Equation 3.3.4 Hermite's Equation 3.3.5 Laguerre's Equation 3.4 Boundary Value Problems Problems Chapter 4: Laplace Transform 4.1 Definition of the Laplace Transform 4.1.1 Laplace Transform of the Unit Step Function 4.1.2 Laplace Transform of the Unit Impulse Function 4.1.3 Laplace Transform of the Ramp Function 4.1.4 Laplace Transform of the Exponential Function 4.1.5 Laplace Transform of the Complex Exponential Function 4.2 Properties of the Laplace Transform 4.2.1 Linearity 4.2.2 Time Differentiation 4.2.3 Time Integration 4.2.4 Time Shifting - Real Translation 4.2.5 Frequency Shifting - Complex Translation 4.2.6 Real Convolution 4.2.7 Partial Differentiation 4.2.8 Complex Differentiation 4.2.9 Initial Value Theorem (IVT) 4.2.10 Final Value Theorem (FVT) 4.3 The Inverse Laplace Transform 4.4 Using of the Laplace Transform 4.5 Transfer Function of a Continuous-Time System Problems 300 Chapter 5: The Z-transform 5.1 Definition of the Z-transform 5.2 Properties of the Z-transform 5.2.1 Linearity 5.2.2 Time Shifting - Real Translation 5.2.3 Frequency Shifting - Complex Translation 5.2.4 Time Reversal 5.2.5 Real Convolution 5.2.6 Complex Convolution 5.2.7 Complex Differentiation 5.2.8 Partial Differentiation 5.2.9 Initial Value Theorem 5.2.10 Final Value Theorem 5.3 The Inverse Z-transform 5.4 Using The Z-transform 5.5 Transfer Function of a Discrete-Time System 5.6 Differential Equation and Difference Equation Problems Chapter 6: Fourier Series and Fourier Transform 6.1 Continuous-Time Fourier Series (CTFS) 6.1.1 Definition and Convergence Conditions 6.1.2 Examples of CTFS 6.2 Continuous-Time Fourier Transform (CTFT) 6.2.1 Definition and Convergence Conditions 6.2.2 (Generalized) CTFT of Periodic Signals 6.2.3 Examples of CTFT 6.2.4 Properties of CTFT 6.3 Discrete-Time Fourier Transform (DTFT) 6.3.1 Definition and Convergence Conditions 6.3.2 Examples of DTFT 6.3.3 DTFT of Periodic Sequences 6.3.4 Properties of DTFT 6.4 Discrete Fourier Transform (DFT) 6.5 Fast Fourier Transform (FFT) 6.5.1 Decimation-in-Time (DIT) FFT 6.5.2 Decimation-in-Frequency (DIF) FFT 6.5.3 Computation of IDFT Using FFT Algorithm 6.5.4 Interpretation of DFT Results 6.6 Fourier-Bessel/Legendre/Chebyshev/Cosine/Sine Series 6.6.1 Fourier-Bessel Series 6.6.2 Fourier-Legendre Series 6.6.3 Fourier-Chebyshev Series 6.6.4 Fourier-Cosine/Sine Series Problems Chapter 7: Partial Differential Equation 7.1 Elliptic PDE 7.2 Parabolic PDE 7.2.1 The Explicit Forward Euler Method 7.2.2 The Implicit Forward Euler Method 7.2.3 The Crank-Nicholson Method 7.2.4 Using the MATLAB Function 'pdepe()' 7.2.5 Two-Dimensional Parabolic PDEs 7.3 Hyperbolic PDES 7.3.1 The Explict Central Difference Method 7.3.2 Tw-Dimensional Hyperbolic PDEs 7.4 PDES in Other Coordinate Systems 7.4.1 PDEs in Polar/Cylindrical Coordinates 7.4.2 PDEs in Spherical Coordinates 7.5 Laplace/Fourier Transforms for Solving PDES 7.5.1 Using the Laplace Transform for PDEs 7.5.2 Using the Fourier Transform for PDEs Problems Chapter 8: Complex Analysis 509 8.1 Functions of a Complex Variable 8.1.1 Complex Numbers and their Powers/Roots 8.1.2 Functions of a Complex Variable 8.1.3 Cauchy-Riemann Equations 8.1.4 Exponential and Logarithmic Functions 8.1.5 Trigonometric and Hyperbolic Functions 8.1.6 Inverse Trigonometric/Hyperbolic Functions 8.2 Conformal Mapping 8.2.1 Conformal Mappings 8.2.2 Linear Fractional Transformations 8.3 Integration of Complex Functions 8.3.1 Line Integrals and Contour Integrals 8.3.2 Cauchy-Goursat Theorem 8.3.3 Cauchy's Integral Formula 8.4 Series and Residues 8.4.1 Sequences and Series 8.4.2 Taylor Series 8.4.3 Laurent Series 8.4.4 Residues and Residue Theorem 8.4.5 Real Integrals Using Residue Theorem Problems Chapter 9: Optimization 9.1 Unconstrained Optimization 9.1.1 Golden Search Method 9.1.2 Quadratic Approximation Method 9.1.3 Nelder-Mead Method 9.1.4 Steepest Descent Method 9.1.5 Newton Method 9.2 Constrained Optimization 9.2.1 Lagrange Multiplier Method 9.2.2 Penalty Function Method 9.3 MATLAB Built-in Functions for Optimization 9.3.1 Unconstrained Optimization 9.3.2 Constrained Optimization 9.3.3 Linear Programming (LP) 9.3.4 Mixed Integer Linear Programing (MILP) Problems Chapter 10: Probability 10.1 Probability 10.1.1 Definition of Probability 10.1.2 Permutations and Combinations 10.1.3 Joint Probability, Conditional Probability, and Bayes' Rule 10.2 Random Variables 10.2.1 Random Variables and Probability Distribution/Density Function 10.2.2 Joint Probability Density Function 10.2.3 Conditional Probability Density Function 10.2.4 Independence 10.2.5 Function of a Random Variable 10.2.6 Expectation, Variance, and Correlation 10.2.7 Conditional Expectation 10.2.8 Central Limit Theorem - Normal Convergence Theorem 10.3 ML Estimator and MAP Estimator 653 Problems

The Elements of MATLAB Style

Author : Richard K. Johnson
Publisher : Cambridge University Press
Page : 181 pages
File Size : 51,6 Mb
Release : 2010-12-31
Category : Computers
ISBN : 9781139496407

Get Book

The Elements of MATLAB Style by Richard K. Johnson Pdf

The Elements of MATLAB Style is a guide for both new and experienced MATLAB programmers. It provides a comprehensive collection of standards and guidelines for creating solid MATLAB code that will be easy to understand, enhance, and maintain. It is written for both individuals and those working in teams in which consistency is critical. This is the only book devoted to MATLAB style and best programming practices, focusing on how MATLAB code can be written in order to maximize its effectiveness. Just as Strunk and White's The Elements of Style provides rules for writing in the English language, this book provides conventions for formatting, naming, documentation, programming and testing. It includes many concise examples of correct and incorrect usage, as well as coverage of the latest language features. The author also provides recommendations on use of the integrated development environment features that help produce better, more consistent software.