Matlab Based Finite Element Programming In Electromagnetic Modeling

Matlab Based Finite Element Programming In Electromagnetic Modeling Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Matlab Based Finite Element Programming In Electromagnetic Modeling book. This book definitely worth reading, it is an incredibly well-written.

Matlab-Based Finite Element Programming in Electromagnetic Modeling

Author : Ozlem Ozgun,Mustafa Kuzuoğlu
Publisher : CRC Press
Page : 434 pages
File Size : 47,6 Mb
Release : 2024-06-30
Category : Electronic
ISBN : 1138746924

Get Book

Matlab-Based Finite Element Programming in Electromagnetic Modeling by Ozlem Ozgun,Mustafa Kuzuoğlu Pdf

This book focuses on finite element methods with emphasis on MATLAB for numerical modeling of electromagnetic problems. Providing readers with knowledge and skills thorough which they can develop their own finite element codes for practical applications, this book also gives beginning researchers an understanding of finite element programming in the context of certain canonical electromagnetic problems. Through the inclusion of step-by-step MATLAB programs with detailed descriptions, readers will be able to modify, adapt, and apply the provided programs and formulations as to other similar programs through various open-ended questions and exercises.

MATLAB-based Finite Element Programming in Electromagnetic Modeling

Author : Özlem Özgün,Mustafa Kuzuoğlu
Publisher : CRC Press
Page : 428 pages
File Size : 51,8 Mb
Release : 2018-09-03
Category : Technology & Engineering
ISBN : 9780429854606

Get Book

MATLAB-based Finite Element Programming in Electromagnetic Modeling by Özlem Özgün,Mustafa Kuzuoğlu Pdf

This book is a self-contained, programming-oriented and learner-centered book on finite element method (FEM), with special emphasis given to developing MATLAB® programs for numerical modeling of electromagnetic boundary value problems. It provides a deep understanding and intuition of FEM programming by means of step-by-step MATLAB® programs with detailed descriptions, and eventually enabling the readers to modify, adapt and apply the provided programs and formulations to develop FEM codes for similar problems through various exercises. It starts with simple one-dimensional static and time-harmonic problems and extends the developed theory to more complex two- or three-dimensional problems. It supplies sufficient theoretical background on the topic, and it thoroughly covers all phases (pre-processing, main body and post-processing) in FEM. FEM formulations are obtained for boundary value problems governed by a partial differential equation that is expressed in terms of a generic unknown function, and then, these formulations are specialized to various electromagnetic applications together with a post-processing phase. Since the method is mostly described in a general context, readers from other disciplines can also use this book and easily adapt the provided codes to their engineering problems. After forming a solid background on the fundamentals of FEM by means of canonical problems, readers are guided to more advanced applications of FEM in electromagnetics through a survey chapter at the end of the book. Offers a self-contained and easy-to-understand introduction to the theory and programming of finite element method. Covers various applications in the field of static and time-harmonic electromagnetics. Includes one-, two- and three-dimensional finite element codes in MATLAB®. Enables readers to develop finite element programming skills through various MATLAB® codes and exercises. Promotes self-directed learning skills and provides an effective instruction tool.

Electromagnetic Modeling by Finite Element Methods

Author : João Pedro A. Bastos,Nelson Sadowski
Publisher : CRC Press
Page : 510 pages
File Size : 44,6 Mb
Release : 2003-04-01
Category : Technology & Engineering
ISBN : 9780203911174

Get Book

Electromagnetic Modeling by Finite Element Methods by João Pedro A. Bastos,Nelson Sadowski Pdf

Unlike any other source in the field, this valuable reference clearly examines key aspects of the finite element method (FEM) for electromagnetic analysis of low-frequency electrical devices. The authors examine phenomena such as nonlinearity, mechanical force, electrical circuit coupling, vibration, heat, and movement for applications in the elect

The Finite Element Method for Electromagnetic Modeling

Author : Gérard Meunier
Publisher : John Wiley & Sons
Page : 618 pages
File Size : 54,9 Mb
Release : 2010-01-05
Category : Science
ISBN : 9780470393802

Get Book

The Finite Element Method for Electromagnetic Modeling by Gérard Meunier Pdf

Written by specialists of modeling in electromagnetism, this book provides a comprehensive review of the finite element method for low frequency applications. Fundamentals of the method as well as new advances in the field are described in detail. Chapters 1 to 4 present general 2D and 3D static and dynamic formulations by the use of scalar and vector unknowns and adapted interpolations for the fields (nodal, edge, face or volume). Chapter 5 is dedicated to the presentation of different macroscopic behavior laws of materials and their implementation in a finite element context: anisotropy and hysteretic properties for magnetic sheets, iron losses, non-linear permanent magnets and superconductors. More specific formulations are then proposed: the modeling of thin regions when finite elements become misfit (Chapter 6), infinite domains by using geometrical transformations (Chapter 7), the coupling of 2D and 3D formulations with circuit equations (Chapter 8), taking into account the movement, particularly in the presence of Eddy currents (Chapter 9) and an original approach for the treatment of geometrical symmetries when the sources are not symmetric (Chapter 10). Chapters 11 to 13 are devoted to coupled problems: magneto-thermal coupling for induction heating, magneto-mechanical coupling by introducing the notion of strong and weak coupling and magneto-hydrodynamical coupling focusing on electromagnetic instabilities in fluid conductors. Chapter 14 presents different meshing methods in the context of electromagnetism (presence of air) and introduces self-adaptive mesh refinement procedures. Optimization techniques are then covered in Chapter 15, with the adaptation of deterministic and probabilistic methods to the numerical finite element environment. Chapter 16 presents a variational approach of electromagnetism, showing how Maxwell equations are derived from thermodynamic principles.

Finite Element Method Electromagnetics

Author : John L. Volakis,Arindam Chatterjee,Leo C. Kempel
Publisher : John Wiley & Sons
Page : 364 pages
File Size : 43,7 Mb
Release : 1998-06-15
Category : Science
ISBN : 0780334256

Get Book

Finite Element Method Electromagnetics by John L. Volakis,Arindam Chatterjee,Leo C. Kempel Pdf

Employed in a large number of commercial electromagnetic simulation packages, the finite element method is one of the most popular and well-established numerical techniques in engineering. This book covers the theory, development, implementation, and application of the finite element method and its hybrid versions to electromagnetics. FINITE ELEMENT METHOD FOR ELECTROMAGNETICS begins with a step-by-step textbook presentation of the finite method and its variations then goes on to provide up-to-date coverage of three dimensional formulations and modern applications to open and closed domain problems. Worked out examples are included to aid the reader with the fine features of the method and the implementation of its hybridization with other techniques for a robust simulation of large scale radiation and scattering. The crucial treatment of local boundary conditions is carefully worked out in several stages in the book. Sponsored by: IEEE Antennas and Propagation Society.

Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB

Author : Sergey N. Makarov,Gregory M. Noetscher,Ara Nazarian
Publisher : John Wiley & Sons
Page : 616 pages
File Size : 42,8 Mb
Release : 2015-06-22
Category : Science
ISBN : 9781119052562

Get Book

Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB by Sergey N. Makarov,Gregory M. Noetscher,Ara Nazarian Pdf

Provides a detailed and systematic description of the Method of Moments (Boundary Element Method) for electromagnetic modeling at low frequencies and includes hands-on, application-based MATLAB® modules with user-friendly and intuitive GUI and a highly visualized interactive output. Includes a full-body computational human phantom with over 120 triangular surface meshes extracted from the Visible Human Project® Female dataset of the National library of Medicine and fully compatible with MATLAB® and major commercial FEM/BEM electromagnetic software simulators. This book covers the basic concepts of computational low-frequency electromagnetics in an application-based format and hones the knowledge of these concepts with hands-on MATLAB® modules. The book is divided into five parts. Part 1 discusses low-frequency electromagnetics, basic theory of triangular surface mesh generation, and computational human phantoms. Part 2 covers electrostatics of conductors and dielectrics, and direct current flow. Linear magnetostatics is analyzed in Part 3. Part 4 examines theory and applications of eddy currents. Finally, Part 5 evaluates nonlinear electrostatics. Application examples included in this book cover all major subjects of low-frequency electromagnetic theory. In addition, this book includes complete or summarized analytical solutions to a large number of quasi-static electromagnetic problems. Each Chapter concludes with a summary of the corresponding MATLAB® modules. Combines fundamental electromagnetic theory and application-oriented computation algorithms in the form of stand alone MATLAB® modules Makes use of the three-dimensional Method of Moments (MoM) for static and quasistatic electromagnetic problems Contains a detailed full-body computational human phantom from the Visible Human Project® Female, embedded implant models, and a collection of homogeneous human shells Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB® is a resource for electrical and biomedical engineering students and practicing researchers, engineers, and medical doctors working on low-frequency modeling and bioelectromagnetic applications.

Iterative and Self-adaptive Finite-elements in Electromagnetic Modeling

Author : Magdalena Salazar-Palma
Publisher : Artech House Publishers
Page : 824 pages
File Size : 48,6 Mb
Release : 1998
Category : Mathematics
ISBN : UOM:39015039045391

Get Book

Iterative and Self-adaptive Finite-elements in Electromagnetic Modeling by Magdalena Salazar-Palma Pdf

Ensure the accuracy of your results when applying the Finite Element Method (FEM) to electromagnetic and antenna problems with this self-contained reference. It provides you with a solid understanding of the method, describes its key elements and numerical techniques, and identifies various approaches to using the FEM in solving real-world microwave field problems.

Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB®

Author : Raymond C. Rumpf
Publisher : Artech House
Page : 350 pages
File Size : 53,7 Mb
Release : 2022-01-31
Category : Technology & Engineering
ISBN : 9781630819279

Get Book

Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB® by Raymond C. Rumpf Pdf

This book teaches the finite-difference frequency-domain (FDFD) method from the simplest concepts to advanced three-dimensional simulations. It uses plain language and high-quality graphics to help the complete beginner grasp all the concepts quickly and visually. This single resource includes everything needed to simulate a wide variety of different electromagnetic and photonic devices. The book is filled with helpful guidance and computational wisdom that will help the reader easily simulate their own devices and more easily learn and implement other methods in computational electromagnetics. Special techniques in MATLAB® are presented that will allow the reader to write their own FDFD programs. Key concepts in electromagnetics are reviewed so the reader can fully understand the calculations happening in FDFD. A powerful method for implementing the finite-difference method is taught that will enable the reader to solve entirely new differential equations and sets of differential equations in mere minutes. Separate chapters are included that describe how Maxwell’s equations are approximated using finite-differences and how outgoing waves can be absorbed using a perfectly matched layer absorbing boundary. With this background, a chapter describes how to calculate guided modes in waveguides and transmission lines. The effective index method is taught as way to model many three-dimensional devices in just two-dimensions. Another chapter describes how to calculate photonic band diagrams and isofrequency contours to quickly estimate the properties of periodic structures like photonic crystals. Next, a chapter presents how to analyze diffraction gratings and calculate the power coupled into each diffraction order. This book shows that many devices can be simulated in the context of a diffraction grating including guided-mode resonance filters, photonic crystals, polarizers, metamaterials, frequency selective surfaces, and metasurfaces. Plane wave sources, Gaussian beam sources, and guided-mode sources are all described in detail, allowing devices to be simulated in multiple ways. An optical integrated circuit is simulated using the effective index method to build a two-dimensional model of the 3D device and then launch a guided-mode source into the circuit. A chapter is included to describe how the code can be modified to easily perform parameter sweeps, such as plotting reflection and transmission as a function of frequency, wavelength, angle of incidence, or a dimension of the device. The last chapter is advanced and teaches FDFD for three-dimensional devices composed of anisotropic materials. It includes simulations of a crossed grating, a doubly-periodic guided-mode resonance filter, a frequency selective surface, and an invisibility cloak. The chapter also includes a parameter retrieval from a left-handed metamaterial. The book includes all the MATLAB codes and detailed explanations of all programs. This will allow the reader to easily modify the codes to simulate their own ideas and devices. The author has created a website where the MATLAB codes can be downloaded, errata can be seen, and other learning resources can be accessed. This is an ideal book for both an undergraduate elective course as well as a graduate course in computational electromagnetics because it covers the background material so well and includes examples of many different types of devices that will be of interest to a very wide audience.

Multigrid Finite Element Methods for Electromagnetic Field Modeling

Author : Yu Zhu,Andreas C. Cangellaris
Publisher : John Wiley & Sons
Page : 453 pages
File Size : 49,5 Mb
Release : 2006-02-03
Category : Science
ISBN : 9780471741107

Get Book

Multigrid Finite Element Methods for Electromagnetic Field Modeling by Yu Zhu,Andreas C. Cangellaris Pdf

This is the first comprehensive monograph that features state-of-the-art multigrid methods for enhancing the modeling versatility, numerical robustness, and computational efficiency of one of the most popular classes of numerical electromagnetic field modeling methods: the method of finite elements. The focus of the publication is the development of robust preconditioners for the iterative solution of electromagnetic field boundary value problems (BVPs) discretized by means of finite methods. Specifically, the authors set forth their own successful attempts to utilize concepts from multigrid and multilevel methods for the effective preconditioning of matrices resulting from the approximation of electromagnetic BVPs using finite methods. Following the authors' careful explanations and step-by-step instruction, readers can duplicate the authors' results and take advantage of today's state-of-the-art multigrid/multilevel preconditioners for finite element-based iterative electromagnetic field solvers. Among the highlights of coverage are: * Application of multigrid, multilevel, and hybrid multigrid/multilevel preconditioners to electromagnetic scattering and radiation problems * Broadband, robust numerical modeling of passive microwave components and circuits * Robust, finite element-based modal analysis of electromagnetic waveguides and cavities * Application of Krylov subspace-based methodologies for reduced-order macromodeling of electromagnetic devices and systems * Finite element modeling of electromagnetic waves in periodic structures The authors provide more than thirty detailed algorithms alongside pseudo-codes to assist readers with practical computer implementation. In addition, each chapter includes an applications section with helpful numerical examples that validate the authors' methodologies and demonstrate their computational efficiency and robustness. This groundbreaking book, with its coverage of an exciting new enabling computer-aided design technology, is an essential reference for computer programmers, designers, and engineers, as well as graduate students in engineering and applied physics.

Magnetic Materials and 3D Finite Element Modeling

Author : João Pedro A. Bastos,Nelson Sadowski
Publisher : CRC Press
Page : 396 pages
File Size : 42,8 Mb
Release : 2017-04-28
Category : Technology & Engineering
ISBN : 9781466592520

Get Book

Magnetic Materials and 3D Finite Element Modeling by João Pedro A. Bastos,Nelson Sadowski Pdf

Magnetic Materials and 3D Finite Element Modeling explores material characterization and finite element modeling (FEM) applications. This book relates to electromagnetic analysis based on Maxwell’s equations and application of the finite element (FE) method to low frequency devices. A great source for senior undergraduate and graduate students in electromagnetics, it also supports industry professionals working in magnetics, electromagnetics, ferromagnetic materials science and electrical engineering. The authors present current concepts on ferromagnetic material characterizations and losses. They provide introductory material; highlight basic electromagnetics, present experimental and numerical modeling related to losses and focus on FEM applied to 3D applications. They also explain various formulations, and discuss numerical codes. • Furnishes algorithms in computational language • Summarizes concepts related to the FE method • Uses classical algebra to present the method, making it easily accessible to engineers Written in an easy-to-understand tutorial format, the text begins with a short presentation of Maxwell’s equations, discusses the generation mechanism of iron losses, and introduces their static and dynamic components. It then demonstrates simplified models for the hysteresis phenomena under alternating magnetic fields. The book also focuses on the Preisach and Jiles–Atherton models, discusses vector hysterisis modeling, introduces the FE technique, and presents nodal and edge elements applied to 3D FE formulation connected to the hysteretic phenomena. The book discusses the concept of source-field for magnetostatic cases, magnetodynamic fields, eddy currents, and anisotropy. It also explores the need for more sophisticated coding, and presents techniques for solving linear systems generated by the FE cases while considering advantages and drawbacks.

The Finite Element Method in Electromagnetics

Author : Jian-Ming Jin
Publisher : John Wiley & Sons
Page : 1212 pages
File Size : 55,6 Mb
Release : 2014-03-31
Category : Science
ISBN : 9781118841983

Get Book

The Finite Element Method in Electromagnetics by Jian-Ming Jin Pdf

A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.

Introduction to the Finite Element Method in Electromagnetics

Author : Anastasis Polycarpou
Publisher : Springer Nature
Page : 115 pages
File Size : 44,9 Mb
Release : 2022-05-31
Category : Technology & Engineering
ISBN : 9783031016899

Get Book

Introduction to the Finite Element Method in Electromagnetics by Anastasis Polycarpou Pdf

This series lecture is an introduction to the finite element method with applications in electromagnetics. The finite element method is a numerical method that is used to solve boundary-value problems characterized by a partial differential equation and a set of boundary conditions. The geometrical domain of a boundary-value problem is discretized using sub-domain elements, called the finite elements, and the differential equation is applied to a single element after it is brought to a “weak” integro-differential form. A set of shape functions is used to represent the primary unknown variable in the element domain. A set of linear equations is obtained for each element in the discretized domain. A global matrix system is formed after the assembly of all elements. This lecture is divided into two chapters. Chapter 1 describes one-dimensional boundary-value problems with applications to electrostatic problems described by the Poisson's equation. The accuracy of the finite element method is evaluated for linear and higher order elements by computing the numerical error based on two different definitions. Chapter 2 describes two-dimensional boundary-value problems in the areas of electrostatics and electrodynamics (time-harmonic problems). For the second category, an absorbing boundary condition was imposed at the exterior boundary to simulate undisturbed wave propagation toward infinity. Computations of the numerical error were performed in order to evaluate the accuracy and effectiveness of the method in solving electromagnetic problems. Both chapters are accompanied by a number of Matlab codes which can be used by the reader to solve one- and two-dimensional boundary-value problems. These codes can be downloaded from the publisher's URL: www.morganclaypool.com/page/polycarpou This lecture is written primarily for the nonexpert engineer or the undergraduate or graduate student who wants to learn, for the first time, the finite element method with applications to electromagnetics. It is also targeted for research engineers who have knowledge of other numerical techniques and want to familiarize themselves with the finite element method. The lecture begins with the basics of the method, including formulating a boundary-value problem using a weighted-residual method and the Galerkin approach, and continues with imposing all three types of boundary conditions including absorbing boundary conditions. Another important topic of emphasis is the development of shape functions including those of higher order. In simple words, this series lecture provides the reader with all information necessary for someone to apply successfully the finite element method to one- and two-dimensional boundary-value problems in electromagnetics. It is suitable for newcomers in the field of finite elements in electromagnetics.

Finite Element and Finite Difference Methods in Electromagnetic Scattering

Author : M.A. Morgan
Publisher : Elsevier
Page : 398 pages
File Size : 53,7 Mb
Release : 2013-10-22
Category : Technology & Engineering
ISBN : 9781483289533

Get Book

Finite Element and Finite Difference Methods in Electromagnetic Scattering by M.A. Morgan Pdf

This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled scalar potentials, to the consideration of conforming boundary elements and leap-frog time-marching in transient field problems involving corners and wedges in two and three dimensions, the volume will provide an indispensable reference source for practitioners and students of computational electromagnetics.

Finite Element Method to Model Electromagnetic Systems in Low Frequency

Author : Francis Piriou,Stephane Clenet
Publisher : John Wiley & Sons
Page : 243 pages
File Size : 49,9 Mb
Release : 2024-02-23
Category : Science
ISBN : 9781394276479

Get Book

Finite Element Method to Model Electromagnetic Systems in Low Frequency by Francis Piriou,Stephane Clenet Pdf

Numerical modeling now plays a central role in the design and study of electromagnetic systems. In the field of devices operating in low frequency, it is the finite element method that has come to the fore in recent decades. Today, it is widely used by engineers and researchers in industry, as well as in research centers. This book describes in detail all the steps required to discretize Maxwell’s equations using the finite element method. This involves progressing from the basic equations in the continuous domain to equations in the discrete domain that are solved by a computer. This approach is carried out with a constant focus on maintaining a link between physics, i.e. the properties of electromagnetic fields, and numerical analysis. Numerous academic examples, which are used throughout the various stages of model construction, help to clarify the developments.

Finite Element Method to Model Electromagnetic Systems in Low Frequency

Author : Francis Piriou,Stephane Clenet
Publisher : John Wiley & Sons
Page : 324 pages
File Size : 52,9 Mb
Release : 2024-04-02
Category : Science
ISBN : 9781786308115

Get Book

Finite Element Method to Model Electromagnetic Systems in Low Frequency by Francis Piriou,Stephane Clenet Pdf

Numerical modeling now plays a central role in the design and study of electromagnetic systems. In the field of devices operating in low frequency, it is the finite element method that has come to the fore in recent decades. Today, it is widely used by engineers and researchers in industry, as well as in research centers. This book describes in detail all the steps required to discretize Maxwell’s equations using the finite element method. This involves progressing from the basic equations in the continuous domain to equations in the discrete domain that are solved by a computer. This approach is carried out with a constant focus on maintaining a link between physics, i.e. the properties of electromagnetic fields, and numerical analysis. Numerous academic examples, which are used throughout the various stages of model construction, help to clarify the developments.