Finite Element Method To Model Electromagnetic Systems In Low Frequency

Finite Element Method To Model Electromagnetic Systems In Low Frequency Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Finite Element Method To Model Electromagnetic Systems In Low Frequency book. This book definitely worth reading, it is an incredibly well-written.

Finite Element Method to Model Electromagnetic Systems in Low Frequency

Author : Francis Piriou,Stephane Clenet
Publisher : John Wiley & Sons
Page : 324 pages
File Size : 53,7 Mb
Release : 2024-04-02
Category : Science
ISBN : 9781786308115

Get Book

Finite Element Method to Model Electromagnetic Systems in Low Frequency by Francis Piriou,Stephane Clenet Pdf

Numerical modeling now plays a central role in the design and study of electromagnetic systems. In the field of devices operating in low frequency, it is the finite element method that has come to the fore in recent decades. Today, it is widely used by engineers and researchers in industry, as well as in research centers. This book describes in detail all the steps required to discretize Maxwell’s equations using the finite element method. This involves progressing from the basic equations in the continuous domain to equations in the discrete domain that are solved by a computer. This approach is carried out with a constant focus on maintaining a link between physics, i.e. the properties of electromagnetic fields, and numerical analysis. Numerous academic examples, which are used throughout the various stages of model construction, help to clarify the developments.

Finite Element Method to Model Electromagnetic Systems in Low Frequency

Author : Francis Piriou,Stephane Clenet
Publisher : John Wiley & Sons
Page : 243 pages
File Size : 44,9 Mb
Release : 2024-02-23
Category : Science
ISBN : 9781394276479

Get Book

Finite Element Method to Model Electromagnetic Systems in Low Frequency by Francis Piriou,Stephane Clenet Pdf

Numerical modeling now plays a central role in the design and study of electromagnetic systems. In the field of devices operating in low frequency, it is the finite element method that has come to the fore in recent decades. Today, it is widely used by engineers and researchers in industry, as well as in research centers. This book describes in detail all the steps required to discretize Maxwell’s equations using the finite element method. This involves progressing from the basic equations in the continuous domain to equations in the discrete domain that are solved by a computer. This approach is carried out with a constant focus on maintaining a link between physics, i.e. the properties of electromagnetic fields, and numerical analysis. Numerous academic examples, which are used throughout the various stages of model construction, help to clarify the developments.

Electromagnetic Modeling by Finite Element Methods

Author : João Pedro A. Bastos,Nelson Sadowski
Publisher : CRC Press
Page : 510 pages
File Size : 45,7 Mb
Release : 2003-04-01
Category : Technology & Engineering
ISBN : 9780203911174

Get Book

Electromagnetic Modeling by Finite Element Methods by João Pedro A. Bastos,Nelson Sadowski Pdf

Unlike any other source in the field, this valuable reference clearly examines key aspects of the finite element method (FEM) for electromagnetic analysis of low-frequency electrical devices. The authors examine phenomena such as nonlinearity, mechanical force, electrical circuit coupling, vibration, heat, and movement for applications in the elect

Magnetic Materials and 3D Finite Element Modeling

Author : João Pedro A. Bastos,Nelson Sadowski
Publisher : CRC Press
Page : 396 pages
File Size : 40,6 Mb
Release : 2017-04-28
Category : Technology & Engineering
ISBN : 9781466592520

Get Book

Magnetic Materials and 3D Finite Element Modeling by João Pedro A. Bastos,Nelson Sadowski Pdf

Magnetic Materials and 3D Finite Element Modeling explores material characterization and finite element modeling (FEM) applications. This book relates to electromagnetic analysis based on Maxwell’s equations and application of the finite element (FE) method to low frequency devices. A great source for senior undergraduate and graduate students in electromagnetics, it also supports industry professionals working in magnetics, electromagnetics, ferromagnetic materials science and electrical engineering. The authors present current concepts on ferromagnetic material characterizations and losses. They provide introductory material; highlight basic electromagnetics, present experimental and numerical modeling related to losses and focus on FEM applied to 3D applications. They also explain various formulations, and discuss numerical codes. • Furnishes algorithms in computational language • Summarizes concepts related to the FE method • Uses classical algebra to present the method, making it easily accessible to engineers Written in an easy-to-understand tutorial format, the text begins with a short presentation of Maxwell’s equations, discusses the generation mechanism of iron losses, and introduces their static and dynamic components. It then demonstrates simplified models for the hysteresis phenomena under alternating magnetic fields. The book also focuses on the Preisach and Jiles–Atherton models, discusses vector hysterisis modeling, introduces the FE technique, and presents nodal and edge elements applied to 3D FE formulation connected to the hysteretic phenomena. The book discusses the concept of source-field for magnetostatic cases, magnetodynamic fields, eddy currents, and anisotropy. It also explores the need for more sophisticated coding, and presents techniques for solving linear systems generated by the FE cases while considering advantages and drawbacks.

Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB

Author : Sergey N. Makarov,Gregory M. Noetscher,Ara Nazarian
Publisher : John Wiley & Sons
Page : 616 pages
File Size : 40,9 Mb
Release : 2015-06-22
Category : Science
ISBN : 9781119052562

Get Book

Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB by Sergey N. Makarov,Gregory M. Noetscher,Ara Nazarian Pdf

Provides a detailed and systematic description of the Method of Moments (Boundary Element Method) for electromagnetic modeling at low frequencies and includes hands-on, application-based MATLAB® modules with user-friendly and intuitive GUI and a highly visualized interactive output. Includes a full-body computational human phantom with over 120 triangular surface meshes extracted from the Visible Human Project® Female dataset of the National library of Medicine and fully compatible with MATLAB® and major commercial FEM/BEM electromagnetic software simulators. This book covers the basic concepts of computational low-frequency electromagnetics in an application-based format and hones the knowledge of these concepts with hands-on MATLAB® modules. The book is divided into five parts. Part 1 discusses low-frequency electromagnetics, basic theory of triangular surface mesh generation, and computational human phantoms. Part 2 covers electrostatics of conductors and dielectrics, and direct current flow. Linear magnetostatics is analyzed in Part 3. Part 4 examines theory and applications of eddy currents. Finally, Part 5 evaluates nonlinear electrostatics. Application examples included in this book cover all major subjects of low-frequency electromagnetic theory. In addition, this book includes complete or summarized analytical solutions to a large number of quasi-static electromagnetic problems. Each Chapter concludes with a summary of the corresponding MATLAB® modules. Combines fundamental electromagnetic theory and application-oriented computation algorithms in the form of stand alone MATLAB® modules Makes use of the three-dimensional Method of Moments (MoM) for static and quasistatic electromagnetic problems Contains a detailed full-body computational human phantom from the Visible Human Project® Female, embedded implant models, and a collection of homogeneous human shells Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB® is a resource for electrical and biomedical engineering students and practicing researchers, engineers, and medical doctors working on low-frequency modeling and bioelectromagnetic applications.

The Finite Element Method in Electromagnetics

Author : Jian-Ming Jin
Publisher : John Wiley & Sons
Page : 800 pages
File Size : 40,6 Mb
Release : 2015-02-18
Category : Science
ISBN : 9781118842027

Get Book

The Finite Element Method in Electromagnetics by Jian-Ming Jin Pdf

A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.

Integral Methods in Low-Frequency Electromagnetics

Author : Pavel Solin,Ivo Dolezel,Pavel Karban,Bohus Ulrych
Publisher : John Wiley & Sons
Page : 418 pages
File Size : 44,5 Mb
Release : 2009-08-11
Category : Computers
ISBN : 9780470502723

Get Book

Integral Methods in Low-Frequency Electromagnetics by Pavel Solin,Ivo Dolezel,Pavel Karban,Bohus Ulrych Pdf

A modern presentation of integral methods in low-frequency electromagnetics This book provides state-of-the-art knowledge on integral methods in low-frequency electromagnetics. Blending theory with numerous examples, it introduces key aspects of the integral methods used in engineering as a powerful alternative to PDE-based models. Readers will get complete coverage of: The electromagnetic field and its basic characteristics An overview of solution methods Solutions of electromagnetic fields by integral expressions Integral and integrodifferential methods Indirect solutions of electromagnetic fields by the boundary element method Integral equations in the solution of selected coupled problems Numerical methods for integral equations All computations presented in the book are done by means of the authors' own codes, and a significant amount of their own results is included. At the book's end, they also discuss novel integral techniques of a higher order of accuracy, which are representative of the future of this rapidly advancing field. Integral Methods in Low-Frequency Electromagnetics is of immense interest to members of the electrical engineering and applied mathematics communities, ranging from graduate students and PhD candidates to researchers in academia and practitioners in industry.

The Finite Element Method for Electromagnetic Modeling

Author : Gerard Meunier
Publisher : Iste Publishing Company
Page : 0 pages
File Size : 55,9 Mb
Release : 2008
Category : Electromagnetic devices
ISBN : 1905209649

Get Book

The Finite Element Method for Electromagnetic Modeling by Gerard Meunier Pdf

Written by specialists of modeling in electromagnetism, this resource provides a comprehensive review of the finite element method for low frequency applications. The fundamentals of this method and latest advances in the field are described in detail through topics such as macroscopic behavior laws of materials, magneto-thermal coupling for induction heating, and how Maxwell equations are derived from thermodynamic principles.

Quick Finite Elements for Electromagnetic Waves

Author : Giuseppe Pelosi,Roberto Coccioli,Stefano Selleri
Publisher : Artech House
Page : 311 pages
File Size : 40,5 Mb
Release : 2009
Category : Science
ISBN : 9781596933460

Get Book

Quick Finite Elements for Electromagnetic Waves by Giuseppe Pelosi,Roberto Coccioli,Stefano Selleri Pdf

The classic 1998 Artech House book, Quick Finite Elements for Electromagnetic Waves, has now been revised and expanded to bring you up-to-date with the latest developments in the Field. You find brand new discussions on finite elements in 3D, 3D resonant cavities, and 3D waveguide devices. Moreover, the second edition supplies you with MATLAB code, making this resource easier to comprehend and use for your projects in the field. This practical book and accompanying software enables you to quickly and easily work out challenging microwave engineering and high-frequency electromagnetic problems using the finite element method (FEM). Using clear, concise text and dozens of real-world application examples, the book provides a detailed description of FEM implementation, while the software provides the code and tools needed to solve the three major types of EM problems: guided propagation, scattering, and radiation. With this unique book and software set in hand, you can compute the dispersion diagram of arbitrarily shaped inhomogeneous isotropic lossless or lossy guiding structures, analyze E- and H-plane waveguide discontinuities and devices, and understand the reflection from and transmission through simple 2D and 3D inhomogeneous periodic structures. CD-ROM Included! Easy-to-use finite element software contains ready-made MATLAB and FORTRAN source code that you can use immediately to solve a wide range of microwave and EM problems. The package is fully compatible with Internet "freeware, " so you can perform advanced engineering functions without having to purchase expensive pre- and post-processing tools.

Frequency Domain Hybrid Finite Element Methods for Electromagnetics

Author : John Leonidas Volakis,Kubilay Sertel,Brian C. Usner
Publisher : Morgan & Claypool Publishers
Page : 157 pages
File Size : 40,5 Mb
Release : 2006
Category : Science
ISBN : 9781598290806

Get Book

Frequency Domain Hybrid Finite Element Methods for Electromagnetics by John Leonidas Volakis,Kubilay Sertel,Brian C. Usner Pdf

This book provides a brief overview of the popular Finite Element Method (FEM) and its hybrid versions for electromagnetics with applications to radar scattering, antennas and arrays, guided structures, microwave components, frequency selective surfaces, periodic media, and RF materials characterizations and related topics. It starts by presenting concepts based on Hilbert and Sobolev spaces as well as Curl and Divergence spaces for generating matrices, useful in all engineering simulation methods. It then proceeds to present applications of the finite element and finite element-boundary integral methods for scattering and radiation. Applications to periodic media, metamaterials and bandgap structures are also included. The hybrid volume integral equation method for high contrast dielectrics and is presented for the first time. Another unique feature of the book is the inclusion of design optimization techniques and their integration within commercial numerical analysis packages for shape and material design. To aid the reader with the method's utility, an entire chapter is devoted to two-dimensional problems. The book can be considered as an update on the latest developments since the publication of our earlier book (Finite Element Method for Electromagnetics, IEEE Press, 1998). The latter is certainly complementary companion to this one.

Finite Element and Finite Difference Methods in Electromagnetic Scattering

Author : M.A. Morgan
Publisher : Elsevier
Page : 398 pages
File Size : 52,6 Mb
Release : 2013-10-22
Category : Technology & Engineering
ISBN : 9781483289533

Get Book

Finite Element and Finite Difference Methods in Electromagnetic Scattering by M.A. Morgan Pdf

This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled scalar potentials, to the consideration of conforming boundary elements and leap-frog time-marching in transient field problems involving corners and wedges in two and three dimensions, the volume will provide an indispensable reference source for practitioners and students of computational electromagnetics.

Computational Electromagnetics with MATLAB, Fourth Edition

Author : Matthew N.O. Sadiku
Publisher : CRC Press
Page : 687 pages
File Size : 48,5 Mb
Release : 2018-07-20
Category : Technology & Engineering
ISBN : 9781351365093

Get Book

Computational Electromagnetics with MATLAB, Fourth Edition by Matthew N.O. Sadiku Pdf

This fourth edition of the text reflects the continuing increase in awareness and use of computational electromagnetics and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite-difference time-domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. It teaches the readers how to pose, numerically analyze, and solve EM problems, to give them the ability to expand their problem-solving skills using a variety of methods, and to prepare them for research in electromagnetism. Includes new homework problems in each chapter. Each chapter is updated with the current trends in CEM. Adds a new appendix on CEM codes, which covers commercial and free codes. Provides updated MATLAB code.

Finite Element Method Electromagnetics

Author : John L. Volakis,Arindam Chatterjee,Leo C. Kempel
Publisher : John Wiley & Sons
Page : 364 pages
File Size : 49,9 Mb
Release : 1998-06-15
Category : Science
ISBN : 0780334256

Get Book

Finite Element Method Electromagnetics by John L. Volakis,Arindam Chatterjee,Leo C. Kempel Pdf

Employed in a large number of commercial electromagnetic simulation packages, the finite element method is one of the most popular and well-established numerical techniques in engineering. This book covers the theory, development, implementation, and application of the finite element method and its hybrid versions to electromagnetics. FINITE ELEMENT METHOD FOR ELECTROMAGNETICS begins with a step-by-step textbook presentation of the finite method and its variations then goes on to provide up-to-date coverage of three dimensional formulations and modern applications to open and closed domain problems. Worked out examples are included to aid the reader with the fine features of the method and the implementation of its hybridization with other techniques for a robust simulation of large scale radiation and scattering. The crucial treatment of local boundary conditions is carefully worked out in several stages in the book. Sponsored by: IEEE Antennas and Propagation Society.

Multigrid Finite Element Methods for Electromagnetic Field Modeling

Author : Yu Zhu,Andreas C. Cangellaris
Publisher : John Wiley & Sons
Page : 438 pages
File Size : 53,7 Mb
Release : 2006-03-10
Category : Science
ISBN : 9780471786375

Get Book

Multigrid Finite Element Methods for Electromagnetic Field Modeling by Yu Zhu,Andreas C. Cangellaris Pdf

This is the first comprehensive monograph that features state-of-the-art multigrid methods for enhancing the modeling versatility, numerical robustness, and computational efficiency of one of the most popular classes of numerical electromagnetic field modeling methods: the method of finite elements. The focus of the publication is the development of robust preconditioners for the iterative solution of electromagnetic field boundary value problems (BVPs) discretized by means of finite methods. Specifically, the authors set forth their own successful attempts to utilize concepts from multigrid and multilevel methods for the effective preconditioning of matrices resulting from the approximation of electromagnetic BVPs using finite methods. Following the authors' careful explanations and step-by-step instruction, readers can duplicate the authors' results and take advantage of today's state-of-the-art multigrid/multilevel preconditioners for finite element-based iterative electromagnetic field solvers. Among the highlights of coverage are: * Application of multigrid, multilevel, and hybrid multigrid/multilevel preconditioners to electromagnetic scattering and radiation problems * Broadband, robust numerical modeling of passive microwave components and circuits * Robust, finite element-based modal analysis of electromagnetic waveguides and cavities * Application of Krylov subspace-based methodologies for reduced-order macromodeling of electromagnetic devices and systems * Finite element modeling of electromagnetic waves in periodic structures The authors provide more than thirty detailed algorithms alongside pseudo-codes to assist readers with practical computer implementation. In addition, each chapter includes an applications section with helpful numerical examples that validate the authors' methodologies and demonstrate their computational efficiency and robustness. This groundbreaking book, with its coverage of an exciting new enabling computer-aided design technology, is an essential reference for computer programmers, designers, and engineers, as well as graduate students in engineering and applied physics.

Compendium On Electromagnetic Analysis - From Electrostatics To Photonics: Fundamentals And Applications For Physicists And Engineers (In 5 Volumes)

Author : Anonim
Publisher : World Scientific
Page : 2064 pages
File Size : 45,7 Mb
Release : 2020-06-15
Category : Technology & Engineering
ISBN : 9789813270183

Get Book

Compendium On Electromagnetic Analysis - From Electrostatics To Photonics: Fundamentals And Applications For Physicists And Engineers (In 5 Volumes) by Anonim Pdf

The five-volume set may serve as a comprehensive reference on electromagnetic analysis and its applications at all frequencies, from static fields to optics and photonics. The material includes micro- and nanomagnetics, the new generation of electric machines, renewable energy, hybrid vehicles, low-noise motors; antennas and microwave devices, plasmonics, metamaterials, lasers, and more.Written at a level accessible to both graduate students and engineers, Electromagnetic Analysis is a comprehensive reference, covering methods and applications at all frequencies (from statics to optical). Each volume contains pedagogical/tutorial material of high archival value as well as chapters on state-of-the-art developments.