Modeling And Control In The Biomedical Sciences

Modeling And Control In The Biomedical Sciences Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Modeling And Control In The Biomedical Sciences book. This book definitely worth reading, it is an incredibly well-written.

Modeling and Control in the Biomedical Sciences

Author : H.T. Banks
Publisher : Springer Science & Business Media
Page : 123 pages
File Size : 53,7 Mb
Release : 2013-03-12
Category : Mathematics
ISBN : 9783642662072

Get Book

Modeling and Control in the Biomedical Sciences by H.T. Banks Pdf

These notes are based on (i) a series of lectures that I gave at the 14th Biennial Seminar of the Canadian Mathematical Congress held at the University of Western Ontario August 12-24, 1973 and (li) some of my lectures in a modeling course that I have cotaught in the Division of Bio-Medical Sciences at Brown during the past several years. An earlier version of these notes appeared in the Center for Dynamical Systems Lectures Notes series (CDS LN 73-1, November 1973). I have in this revised and extended version of those earlier notes incorporated a number of changes based both on classroom experience and on my research efforts with several colleagues during the intervening period. The narrow viewpoint of the present notes (use of optimization and control theory in biomedical problems) reflects more the scope of the CMC lectures given in August, 1973 than the scope of my own interests. Indeed, my real interests have included the modeling process itself as well as the contributions made by investiga tors who employ the techniques and ideas of control theory, systems analysis, dif ferential equations, and stochastic processes. Some of these contributions have quite naturally involved application of optimal control theory. But in my opinion many of the interesting efforts being made in modeling in the biomedical sciences encompass much more than the use of control theory.

Dynamic Models and Control of Biological Systems

Author : Vadrevu Sree Hari Rao,Ponnada Raja Sekhara Rao
Publisher : Springer Science & Business Media
Page : 279 pages
File Size : 48,8 Mb
Release : 2009-07-30
Category : Science
ISBN : 9781441903594

Get Book

Dynamic Models and Control of Biological Systems by Vadrevu Sree Hari Rao,Ponnada Raja Sekhara Rao Pdf

Mathematical Biology has grown at an astonishing rate and has established itself as a distinct discipline. Mathematical modeling is now being applied in every major discipline in the biological sciences. Though the field has become increasingly large and specialized, this book remains important as a text that introduces some of the exciting problems which arise in the biological sciences and gives some indication of the wide spectrum of questions that modeling can address.

Introduction to Modeling in Physiology and Medicine

Author : Claudio Cobelli,Ewart Carson
Publisher : Elsevier
Page : 337 pages
File Size : 53,5 Mb
Release : 2008-02-06
Category : Technology & Engineering
ISBN : 9780080559988

Get Book

Introduction to Modeling in Physiology and Medicine by Claudio Cobelli,Ewart Carson Pdf

This unified modeling textbook for students of biomedical engineering provides a complete course text on the foundations, theory and practice of modeling and simulation in physiology and medicine. It is dedicated to the needs of biomedical engineering and clinical students, supported by applied BME applications and examples. Developed for biomedical engineering and related courses: speaks to BME students at a level and in a language appropriate to their needs, with an interdisciplinary clinical/engineering approach, quantitative basis, and many applied examples to enhance learning Delivers a quantitative approach to modeling and also covers simulation: the perfect foundation text for studies across BME and medicine Extensive case studies and engineering applications from BME, plus end-of-chapter exercises

Control Applications for Biomedical Engineering Systems

Author : Ahmad Taher Azar
Publisher : Academic Press
Page : 476 pages
File Size : 53,6 Mb
Release : 2020-01-22
Category : Computers
ISBN : 9780128174623

Get Book

Control Applications for Biomedical Engineering Systems by Ahmad Taher Azar Pdf

Control Applications for Biomedical Engineering Systems presents different control engineering and modeling applications in the biomedical field. It is intended for senior undergraduate or graduate students in both control engineering and biomedical engineering programs. For control engineering students, it presents the application of various techniques already learned in theoretical lectures in the biomedical arena. For biomedical engineering students, it presents solutions to various problems in the field using methods commonly used by control engineers. Points out theoretical and practical issues to biomedical control systems Brings together solutions developed under different settings with specific attention to the validation of these tools in biomedical settings using real-life datasets and experiments Presents significant case studies on devices and applications

Mathematical Modelling in Biomedicine

Author : Y. Cherruault
Publisher : Springer Science & Business Media
Page : 286 pages
File Size : 47,9 Mb
Release : 1986-02-28
Category : Mathematics
ISBN : 9027721491

Get Book

Mathematical Modelling in Biomedicine by Y. Cherruault Pdf

Approach your problems from the right It isn't that they can't see the solution. It end and begin with the answers. Then is that they can't see the problem. one day, perhaps you will find the final question. G.K. Chesterton. The Scandal of Father Brown 'The point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, cod ing theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical pro gramming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces.

Modelling and Control in Biomedical Systems 2006

Author : David Dagan Feng,Janan Zaytoon
Publisher : Elsevier
Page : 920 pages
File Size : 43,5 Mb
Release : 2006-09-19
Category : Technology & Engineering
ISBN : 0080479499

Get Book

Modelling and Control in Biomedical Systems 2006 by David Dagan Feng,Janan Zaytoon Pdf

Modelling and Control in Biomedical Systems (including Biological Systems) was held in Reims, France, 20-22 August 2006. This Symposium was organised by the University of Reims Champagne Ardenne and the Société de l’Electricité, de l’Electronique et des TIC (SEE). The Symposium attracted practitioners in engineering, information technology, mathematics, medicine and biology, and other related disciplines, with authors from 24 countries. Besides the abstracts of the four plenary lectures, this volume contains the 92 papers that were presented by their authors at the Symposium. The papers included two invited keynote presentations given by internationally prominent and well-recognised research leaders: Claudio Cobelli, whose talk is titled "Dynamic modelling in diabetes: from whole body to genes"; and Irving J. Bigio, whose talk is titled "Elastic scattering spectroscopy for non-invasive detection of cancer". Two prestigious industrial speakers were also invited to give keynote presentations: Terry O'Brien from LIDCO, whose talk is titled "LIDCO: From the laboratory to protocolized goal directed therapy"; and Lorenzo Quinzio of Philips, whose talk is titled "Clinical decision support in monitoring and information systems". A valuable source of information on the state-of- the-art in Modelling and Control in Biomedical Systems Including abstracts of four plenary lectures, and 92 papers presented by their authors

Modelling and Control in Biomedical Systems 1997 (including Biological Systems)

Author : D. A. Linkens,Ewart R. Carson
Publisher : Pergamon
Page : 386 pages
File Size : 47,7 Mb
Release : 1997
Category : Mathematics
ISBN : UOM:39015047104552

Get Book

Modelling and Control in Biomedical Systems 1997 (including Biological Systems) by D. A. Linkens,Ewart R. Carson Pdf

Paperback. This volume contains the 90 papers presented at the 3rd IFAC Symposium on Modelling and Control in Biomedical Systems held in Warwick, UK from 23-26 March 1997. Significant work in the field of biomedical systems analysis and design is taking place throughout the world and the opportunities for technological interchanges offered by symposia like this one are extremely valuable for the progress and stability of effort and vision in this important human-centred field.The symposium was multi- and inter-disciplinary in nature with the choice of topics solicited covering the major systems' components and functions of complex physiology. The remit was also extended, on this occasion, beyond mammalian physiology to that of biological systems. Therefore, a special session was devoted to the modelling and control of botanical systems with the aim of providing an exchange of ideas with biomathematicians.

Modelling Optimization and Control of Biomedical Systems

Author : Efstratios N. Pistikopoulos,Ioana Nascu,Eirini G. Velliou
Publisher : John Wiley & Sons
Page : 326 pages
File Size : 51,5 Mb
Release : 2018-01-09
Category : Technology & Engineering
ISBN : 9781118965597

Get Book

Modelling Optimization and Control of Biomedical Systems by Efstratios N. Pistikopoulos,Ioana Nascu,Eirini G. Velliou Pdf

Shows the newest developments in the field of multi-parametric model predictive control and optimization and their application for drug delivery systems This book is based on the Modelling, Control and Optimization of Biomedical Systems (MOBILE) project, which was created to derive intelligent computer model-based systems for optimization of biomedical drug delivery systems in the cases of diabetes, anaesthesia, and blood cancer. These systems can ensure reliable and fast calculation of the optimal drug dosage without the need for an online computer—while taking into account the specifics and constraints of the patient model, flexibility to adapt to changing patient characteristics and incorporation of the physician’s performance criteria, and maintaining the safety of the patients. Modelling Optimization and Control of Biomedical Systems covers: mathematical modelling of drug delivery systems; model analysis, parameter estimation, and approximation; optimization and control; sensitivity analysis & model reduction; multi-parametric programming and model predictive control; estimation techniques; physiologically-based patient model; control design for volatile anaesthesia; multiparametric model based approach to intravenous anaesthesia; hybrid model predictive control strategies; Type I Diabetes Mellitus; in vitro and in silico block of the integrated platform for the study of leukaemia; chemotherapy treatment as a process systems application; and more. Introduces readers to the Modelling, Control and Optimization of Biomedical Systems (MOBILE) project Presents in detail the theoretical background, computational tools, and methods that are used in all the different biomedical systems Teaches the theory for multi-parametric mixed-integer programming and explicit optimal control of volatile anaesthesia Provides an overview of the framework for modelling, optimization, and control of biomedical systems This book will appeal to students, researchers, and scientists working on the modelling, control, and optimization of biomedical systems and to those involved in cancer treatment, anaesthsia, and drug delivery systems.

Control Theory in Biomedical Engineering

Author : Olfa Boubaker
Publisher : Academic Press
Page : 396 pages
File Size : 44,6 Mb
Release : 2020-06-30
Category : Science
ISBN : 9780128226216

Get Book

Control Theory in Biomedical Engineering by Olfa Boubaker Pdf

Control Theory in Biomedical Engineering: Applications in Physiology and Medical Robotics highlights the importance of control theory and feedback control in our lives and explains how this theory is central to future medical developments. Control theory is fundamental for understanding feedback paths in physiological systems (endocrine system, immune system, neurological system) and a concept for building artificial organs. The book is suitable for graduate students and researchers in the control engineering and biomedical engineering fields, and medical students and practitioners seeking to enhance their understanding of physiological processes, medical robotics (legs, hands, knees), and controlling artificial devices (pacemakers, insulin injection devices). Control theory profoundly impacts the everyday lives of a large part of the human population including the disabled and the elderly who use assistive and rehabilitation robots for improving the quality of their lives and increasing their independence. Gives an overview of state-of-the-art control theory in physiology, emphasizing the importance of this theory in the medical field through concrete examples, e.g., endocrine, immune, and neurological systems Takes a comprehensive look at advances in medical robotics and rehabilitation devices and presents case studies focusing on their feedback control Presents the significance of control theory in the pervasiveness of medical robots in surgery, exploration, diagnosis, therapy, and rehabilitation

Modeling Dynamic Biological Systems

Author : Bruce Hannon,Matthias Ruth
Publisher : Springer
Page : 419 pages
File Size : 50,9 Mb
Release : 2014-07-05
Category : Science
ISBN : 9783319056159

Get Book

Modeling Dynamic Biological Systems by Bruce Hannon,Matthias Ruth Pdf

Many biologists and ecologists have developed models that find widespread use in theoretical investigations and in applications to organism behavior, disease control, population and metapopulation theory, ecosystem dynamics, and environmental management. This book captures and extends the process of model development by concentrating on the dynamic aspects of these processes and by providing the tools such that virtually anyone with basic knowledge in the Life Sciences can develop meaningful dynamic models. Examples of the systems modeled in the book range from models of cell development, the beating heart, the growth and spread of insects, spatial competition and extinction, to the spread and control of epidemics, including the conditions for the development of chaos. Key features: - easy-to-learn and easy-to-use software - examples from many subdisciplines of biology, covering models of cells, organisms, populations, and metapopulations - no prior computer or programming experience required Key benefits: - learn how to develop modeling skills and system thinking on your own rather than use models developed by others - be able to easily run models under alternative assumptions and investigate the implications of these assumptions for the dynamics of the biological system being modeled - develop skills to assess the dynamics of biological systems

Biomedical Modeling and Simulation on a PC

Author : Rogier P.van Wijk van Brievingh,Dietmar P.F. Möller,Xun Shen
Publisher : Springer Science & Business Media
Page : 533 pages
File Size : 47,6 Mb
Release : 2013-03-12
Category : Science
ISBN : 9781461391630

Get Book

Biomedical Modeling and Simulation on a PC by Rogier P.van Wijk van Brievingh,Dietmar P.F. Möller,Xun Shen Pdf

I have long had an interest in the life sciences, but have had few opportunities to indulge that interest in my professional activities. It has only been through simulation that those opportunities have arisen. Some of my most enjoyable classes were those I taught to students in the life sciences, where I attempted to show them the value of simulation to their discipline. That there is such a value cannot be questioned. Whether you are interested in population ecology, phar macokinetics, the cardiovascular system, or cell interaction, simulation can play a vital role in explaining the underlying processes and in enhancing our understanding of these processes. This book comprises an excellent collection of contributions, and clearly demonstrates the value of simulation in the particular areas of physiology and bioengineering. My main frustration when teaching these classes to people with little or no computer background was the lack of suitable simulation software. This di rectly inspired my own attempts at producing software usable by the computer novice. It is especially nice that software is available that enables readers to experience the examples in this book for themselves. I would like to congratulate and thank the editors, Rogier P. van Wijk van Brievingh and Dietmar P. P. Moller, for all of their excellent efforts. They should be proud of their achievement. This is the sixth volume in the Advances in Simulation series, and other volumes are in preparation.

Optimal Control Applied to Biological Models

Author : Suzanne Lenhart,John T. Workman
Publisher : CRC Press
Page : 272 pages
File Size : 53,7 Mb
Release : 2007-05-07
Category : Mathematics
ISBN : 9781584886402

Get Book

Optimal Control Applied to Biological Models by Suzanne Lenhart,John T. Workman Pdf

From economics and business to the biological sciences to physics and engineering, professionals successfully use the powerful mathematical tool of optimal control to make management and strategy decisions. Optimal Control Applied to Biological Models thoroughly develops the mathematical aspects of optimal control theory and provides insight into the application of this theory to biological models. Focusing on mathematical concepts, the book first examines the most basic problem for continuous time ordinary differential equations (ODEs) before discussing more complicated problems, such as variations of the initial conditions, imposed bounds on the control, multiple states and controls, linear dependence on the control, and free terminal time. In addition, the authors introduce the optimal control of discrete systems and of partial differential equations (PDEs). Featuring a user-friendly interface, the book contains fourteen interactive sections of various applications, including immunology and epidemic disease models, management decisions in harvesting, and resource allocation models. It also develops the underlying numerical methods of the applications and includes the MATLAB® codes on which the applications are based. Requiring only basic knowledge of multivariable calculus, simple ODEs, and mathematical models, this text shows how to adjust controls in biological systems in order to achieve proper outcomes.

Mathematical Methods and Models in Biomedicine

Author : Urszula Ledzewicz,Heinz Schättler,Avner Friedman,Eugene Kashdan
Publisher : Springer Science & Business Media
Page : 426 pages
File Size : 48,7 Mb
Release : 2012-10-21
Category : Mathematics
ISBN : 9781461441779

Get Book

Mathematical Methods and Models in Biomedicine by Urszula Ledzewicz,Heinz Schättler,Avner Friedman,Eugene Kashdan Pdf

Mathematical biomedicine is a rapidly developing interdisciplinary field of research that connects the natural and exact sciences in an attempt to respond to the modeling and simulation challenges raised by biology and medicine. There exist a large number of mathematical methods and procedures that can be brought in to meet these challenges and this book presents a palette of such tools ranging from discrete cellular automata to cell population based models described by ordinary differential equations to nonlinear partial differential equations representing complex time- and space-dependent continuous processes. Both stochastic and deterministic methods are employed to analyze biological phenomena in various temporal and spatial settings. This book illustrates the breadth and depth of research opportunities that exist in the general field of mathematical biomedicine by highlighting some of the fascinating interactions that continue to develop between the mathematical and biomedical sciences. It consists of five parts that can be read independently, but are arranged to give the reader a broader picture of specific research topics and the mathematical tools that are being applied in its modeling and analysis. The main areas covered include immune system modeling, blood vessel dynamics, cancer modeling and treatment, and epidemiology. The chapters address topics that are at the forefront of current biomedical research such as cancer stem cells, immunodominance and viral epitopes, aggressive forms of brain cancer, or gene therapy. The presentations highlight how mathematical modeling can enhance biomedical understanding and will be of interest to both the mathematical and the biomedical communities including researchers already working in the field as well as those who might consider entering it. Much of the material is presented in a way that gives graduate students and young researchers a starting point for their own work.

Model-Based Hypothesis Testing in Biomedicine

Author : Rikard Johansson
Publisher : Linköping University Electronic Press
Page : 102 pages
File Size : 55,6 Mb
Release : 2017-10-03
Category : Electronic
ISBN : 9789176854570

Get Book

Model-Based Hypothesis Testing in Biomedicine by Rikard Johansson Pdf

The utilization of mathematical tools within biology and medicine has traditionally been less widespread compared to other hard sciences, such as physics and chemistry. However, an increased need for tools such as data processing, bioinformatics, statistics, and mathematical modeling, have emerged due to advancements during the last decades. These advancements are partly due to the development of high-throughput experimental procedures and techniques, which produce ever increasing amounts of data. For all aspects of biology and medicine, these data reveal a high level of inter-connectivity between components, which operate on many levels of control, and with multiple feedbacks both between and within each level of control. However, the availability of these large-scale data is not synonymous to a detailed mechanistic understanding of the underlying system. Rather, a mechanistic understanding is gained first when we construct a hypothesis, and test its predictions experimentally. Identifying interesting predictions that are quantitative in nature, generally requires mathematical modeling. This, in turn, requires that the studied system can be formulated into a mathematical model, such as a series of ordinary differential equations, where different hypotheses can be expressed as precise mathematical expressions that influence the output of the model. Within specific sub-domains of biology, the utilization of mathematical models have had a long tradition, such as the modeling done on electrophysiology by Hodgkin and Huxley in the 1950s. However, it is only in recent years, with the arrival of the field known as systems biology that mathematical modeling has become more commonplace. The somewhat slow adaptation of mathematical modeling in biology is partly due to historical differences in training and terminology, as well as in a lack of awareness of showcases illustrating how modeling can make a difference, or even be required, for a correct analysis of the experimental data. In this work, I provide such showcases by demonstrating the universality and applicability of mathematical modeling and hypothesis testing in three disparate biological systems. In Paper II, we demonstrate how mathematical modeling is necessary for the correct interpretation and analysis of dominant negative inhibition data in insulin signaling in primary human adipocytes. In Paper III, we use modeling to determine transport rates across the nuclear membrane in yeast cells, and we show how this technique is superior to traditional curve-fitting methods. We also demonstrate the issue of population heterogeneity and the need to account for individual differences between cells and the population at large. In Paper IV, we use mathematical modeling to reject three hypotheses concerning the phenomenon of facilitation in pyramidal nerve cells in rats and mice. We also show how one surviving hypothesis can explain all data and adequately describe independent validation data. Finally, in Paper I, we develop a method for model selection and discrimination using parametric bootstrapping and the combination of several different empirical distributions of traditional statistical tests. We show how the empirical log-likelihood ratio test is the best combination of two tests and how this can be used, not only for model selection, but also for model discrimination. In conclusion, mathematical modeling is a valuable tool for analyzing data and testing biological hypotheses, regardless of the underlying biological system. Further development of modeling methods and applications are therefore important since these will in all likelihood play a crucial role in all future aspects of biology and medicine, especially in dealing with the burden of increasing amounts of data that is made available with new experimental techniques. Användandet av matematiska verktyg har inom biologi och medicin traditionellt sett varit mindre utbredd jämfört med andra ämnen inom naturvetenskapen, såsom fysik och kemi. Ett ökat behov av verktyg som databehandling, bioinformatik, statistik och matematisk modellering har trätt fram tack vare framsteg under de senaste decennierna. Dessa framsteg är delvis ett resultat av utvecklingen av storskaliga datainsamlingstekniker. Inom alla områden av biologi och medicin så har dessa data avslöjat en hög nivå av interkonnektivitet mellan komponenter, verksamma på många kontrollnivåer och med flera återkopplingar både mellan och inom varje nivå av kontroll. Tillgång till storskaliga data är emellertid inte synonymt med en detaljerad mekanistisk förståelse för det underliggande systemet. Snarare uppnås en mekanisk förståelse först när vi bygger en hypotes vars prediktioner vi kan testa experimentellt. Att identifiera intressanta prediktioner som är av kvantitativ natur, kräver generellt sett matematisk modellering. Detta kräver i sin tur att det studerade systemet kan formuleras till en matematisk modell, såsom en serie ordinära differentialekvationer, där olika hypoteser kan uttryckas som precisa matematiska uttryck som påverkar modellens output. Inom vissa delområden av biologin har utnyttjandet av matematiska modeller haft en lång tradition, såsom den modellering gjord inom elektrofysiologi av Hodgkin och Huxley på 1950?talet. Det är emellertid just på senare år, med ankomsten av fältet systembiologi, som matematisk modellering har blivit ett vanligt inslag. Den något långsamma adapteringen av matematisk modellering inom biologi är bl.a. grundad i historiska skillnader i träning och terminologi, samt brist på medvetenhet om exempel som illustrerar hur modellering kan göra skillnad och faktiskt ofta är ett krav för en korrekt analys av experimentella data. I detta arbete tillhandahåller jag sådana exempel och demonstrerar den matematiska modelleringens och hypotestestningens allmängiltighet och tillämpbarhet i tre olika biologiska system. I Arbete II visar vi hur matematisk modellering är nödvändig för en korrekt tolkning och analys av dominant-negativ-inhiberingsdata vid insulinsignalering i primära humana adipocyter. I Arbete III använder vi modellering för att bestämma transporthastigheter över cellkärnmembranet i jästceller, och vi visar hur denna teknik är överlägsen traditionella kurvpassningsmetoder. Vi demonstrerar också frågan om populationsheterogenitet och behovet av att ta hänsyn till individuella skillnader mellan celler och befolkningen som helhet. I Arbete IV använder vi matematisk modellering för att förkasta tre hypoteser om hur fenomenet facilitering uppstår i pyramidala nervceller hos råttor och möss. Vi visar också hur en överlevande hypotes kan beskriva all data, inklusive oberoende valideringsdata. Slutligen utvecklar vi i Arbete I en metod för modellselektion och modelldiskriminering med hjälp av parametrisk ”bootstrapping” samt kombinationen av olika empiriska fördelningar av traditionella statistiska tester. Vi visar hur det empiriska ”log-likelihood-ratio-testet” är den bästa kombinationen av två tester och hur testet är applicerbart, inte bara för modellselektion, utan också för modelldiskriminering. Sammanfattningsvis är matematisk modellering ett värdefullt verktyg för att analysera data och testa biologiska hypoteser, oavsett underliggande biologiskt system. Vidare utveckling av modelleringsmetoder och tillämpningar är därför viktigt eftersom dessa sannolikt kommer att spela en avgörande roll i framtiden för biologi och medicin, särskilt när det gäller att hantera belastningen från ökande datamängder som blir tillgänglig med nya experimentella tekniker.

Modelling Methodology for Physiology and Medicine

Author : Ewart Carson,Claudio Cobelli
Publisher : Elsevier
Page : 421 pages
File Size : 49,9 Mb
Release : 2000-12-31
Category : Sports & Recreation
ISBN : 9780080511900

Get Book

Modelling Methodology for Physiology and Medicine by Ewart Carson,Claudio Cobelli Pdf

Modelling Methodology for Physiology and Medicine offers a unique approach and an unprecedented range of coverage of the state-of-the-art, advanced modelling methodology that is widely applicable to physiology and medicine. The book opens with a clear and integrated treatment of advanced methodology for developing mathematical models of physiology and medical systems. Readers are then shown how to apply this methodology beneficially to real-world problems in physiology and medicine, such as circulation and respiration. Builds upon and enhances the readers existing knowledge of modelling methodology and practice Editors are internationally renowned leaders in their respective fields