Modern Semiconductor Quantum Physics

Modern Semiconductor Quantum Physics Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Modern Semiconductor Quantum Physics book. This book definitely worth reading, it is an incredibly well-written.

Modern Semiconductor Quantum Physics

Author : Ming-Fu Li
Publisher : World Scientific
Page : 589 pages
File Size : 48,5 Mb
Release : 1995-02-01
Category : Science
ISBN : 9789810248932

Get Book

Modern Semiconductor Quantum Physics by Ming-Fu Li Pdf

Modern Semiconductor Quantum Physics has the following constituents: (1) energy band theory: pseudopotential method (empirical and ab initio); density functional theory; quasi-particles; LCAO method; k.p method; spin-orbit splitting; effect mass and Luttinger parameters; strain effects and deformation potentials; temperature effects. (2) Optical properties: absorption and exciton effect; modulation spectroscopy; photo luminescence and photo luminescence excitation; Raman scattering and polaritons; photoionization. (3) Defects and Impurities: effective mass theory and shallow impurity states; deep state cluster method, super cell method, Green's function method; carrier recombination kinetics; trapping transient measurements; electron spin resonance; electron lattice interaction and lattice relaxation effects; multi-phonon nonradiative recombination; negative U center, DX center and EL2 Defects. (4) Semiconductor surfaces: two dimensional periodicity and surface reconstruction; surface electronic states; photo-electron spectroscopy; LEED, STM and other experimental methods. (5) Low-dimensional structures: Heterojunctions, quantum wells; superlattices, quantum-confined Stark effect and Wannier-Stark ladder effects; resonant tunneling, quantum Hall effect, quantum wires and quantum dots.This book can be used as an advanced textbook on semiconductor physics for graduate students in physics and electrical engineering departments. It is also useful as a research reference for solid state scientists and semiconductor device engineers.

Modern Semiconductor Physics and Device Applications

Author : Vitalii K Dugaev,Vladimir I Litvinov
Publisher : CRC Press
Page : 397 pages
File Size : 42,5 Mb
Release : 2021-11-15
Category : Science
ISBN : 9781000462296

Get Book

Modern Semiconductor Physics and Device Applications by Vitalii K Dugaev,Vladimir I Litvinov Pdf

This textbook provides a theoretical background for contemporary trends in solid-state theory and semiconductor device physics. It discusses advanced methods of quantum mechanics and field theory and is therefore primarily intended for graduate students in theoretical and experimental physics who have already studied electrodynamics, statistical physics, and quantum mechanics. It also relates solid-state physics fundamentals to semiconductor device applications and includes auxiliary results from mathematics and quantum mechanics, making the book useful also for graduate students in electrical engineering and material science. Key Features: Explores concepts common in textbooks on semiconductors, in addition to topics not included in similar books currently available on the market, such as the topology of Hilbert space in crystals Contains the latest research and developments in the field Written in an accessible yet rigorous manner

Modern Semiconductor Physics and Device Applications

Author : Vitalii K Dugaev,Vladimir I Litvinov
Publisher : CRC Press
Page : 373 pages
File Size : 52,9 Mb
Release : 2021-11-22
Category : Science
ISBN : 9781000462333

Get Book

Modern Semiconductor Physics and Device Applications by Vitalii K Dugaev,Vladimir I Litvinov Pdf

This textbook provides a theoretical background for contemporary trends in solid-state theory and semiconductor device physics. It discusses advanced methods of quantum mechanics and field theory and is therefore primarily intended for graduate students in theoretical and experimental physics who have already studied electrodynamics, statistical physics, and quantum mechanics. It also relates solid-state physics fundamentals to semiconductor device applications and includes auxiliary results from mathematics and quantum mechanics, making the book useful also for graduate students in electrical engineering and material science. Key Features: Explores concepts common in textbooks on semiconductors, in addition to topics not included in similar books currently available on the market, such as the topology of Hilbert space in crystals Contains the latest research and developments in the field Written in an accessible yet rigorous manner

Semiconductor Quantum Optoelectronics

Author : A. Miller
Publisher : CRC Press
Page : 990 pages
File Size : 48,6 Mb
Release : 2020-12-18
Category : Science
ISBN : 9781000154375

Get Book

Semiconductor Quantum Optoelectronics by A. Miller Pdf

The development and application of low-dimensional semiconductors have been rapid and spectacular during the past decade. Ever improving epitaxial growth and device fabrication techniques have allowed access to some remarkable new physics in quantum confined structures while a plethora of new devices has emerged. The field of optoelectronics in particular has benefited from these advances both in terms of improved performance and the invention of fundamentally new types of device, at a time when the use of optics and lasers in telecommunications, broadcasting, the Internet, signal processing, and computing has been rapidly expanding. An appreciation of the physics of quantum and dynamic electronic processes in confined structures is key to the understanding of many of the latest devices and their continued development. Semiconductor Quantum Optoelectronics covers new physics and the latest device developments in low-dimensional semiconductors. It allows those who already have some familiarity with semiconductor physics and devices to broaden and expand their knowledge into new and expanding topics in low-dimensional semiconductors. The book provides pedagogical coverage of selected areas of new and pertinent physics of low-dimensional structures and presents some optoelectronic devices presently under development. Coverage includes material and band structure issues and the physics of ultrafast, nonlinear, coherent, intersubband, and intracavity phenomena. The book emphasizes various devices, including quantum wells, visible, quantum cascade, and mode-locked lasers; microcavity LEDs and VCSELs; and detectors and logic elements. An underlying theme is high-speed phenomena and devices for increased system bandwidths.

Quantum Theory of the Optical and Electronic Properties of Semiconductors

Author : Hartmut Haug,Stephan W Koch
Publisher : World Scientific Publishing Company
Page : 484 pages
File Size : 53,6 Mb
Release : 2009-01-22
Category : Technology & Engineering
ISBN : 9789813101111

Get Book

Quantum Theory of the Optical and Electronic Properties of Semiconductors by Hartmut Haug,Stephan W Koch Pdf

This invaluable textbook presents the basic elements needed to understand and research into semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. Fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, the optical Stark effect, the semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz–Keldysh effects, are covered. The material is presented in sufficient detail for graduate students and researchers with a general background in quantum mechanics. This fifth edition includes an additional chapter on 'Quantum Optical Effects' where the theory of quantum optical effects in semiconductors is detailed. Besides deriving the 'semiconductor luminescence equations' and the expression for the stationary luminescence spectrum, results are presented to show the importance of Coulombic effects on the semiconductor luminescence and to elucidate the role of excitonic populations.

The Physics of Semiconductors

Author : Kevin F. Brennan
Publisher : Cambridge University Press
Page : 784 pages
File Size : 54,6 Mb
Release : 1999-02-13
Category : Science
ISBN : 0521596629

Get Book

The Physics of Semiconductors by Kevin F. Brennan Pdf

Modern fabrication techniques have made it possible to produce semiconductor devices whose dimensions are so small that quantum mechanical effects dominate their behavior. This book describes the key elements of quantum mechanics, statistical mechanics, and solid-state physics that are necessary in understanding these modern semiconductor devices. The author begins with a review of elementary quantum mechanics, and then describes more advanced topics, such as multiple quantum wells. He then disusses equilibrium and nonequilibrium statistical mechanics. Following this introduction, he provides a thorough treatment of solid-state physics, covering electron motion in periodic potentials, electron-phonon interaction, and recombination processes. The final four chapters deal exclusively with real devices, such as semiconductor lasers, photodiodes, flat panel displays, and MOSFETs. The book contains many homework exercises and is suitable as a textbook for electrical engineering, materials science, or physics students taking courses in solid-state device physics. It will also be a valuable reference for practising engineers in optoelectronics and related areas.

Quantum Theory of the Optical and Electronic Properties of Semiconductors

Author : Hartmut Haug,Stephan W. Koch
Publisher : World Scientific Publishing Company Incorporated
Page : 473 pages
File Size : 43,7 Mb
Release : 1994
Category : Science
ISBN : 9810220022

Get Book

Quantum Theory of the Optical and Electronic Properties of Semiconductors by Hartmut Haug,Stephan W. Koch Pdf

This textbook presents the basic elements needed to understand and engage in research in semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. The fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, optical Stark effect, semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz-Keldysh effects are covered. The material is presented in sufficient detail for graduate students and researchers who have a general background in quantum mechanics.

Theory of Electron Transport in Semiconductors

Author : Carlo Jacoboni
Publisher : Springer Science & Business Media
Page : 590 pages
File Size : 52,7 Mb
Release : 2010-09-05
Category : Science
ISBN : 9783642105869

Get Book

Theory of Electron Transport in Semiconductors by Carlo Jacoboni Pdf

This book originated out of a desire to provide students with an instrument which might lead them from knowledge of elementary classical and quantum physics to moderntheoreticaltechniques for the analysisof electrontransport in semiconductors. The book is basically a textbook for students of physics, material science, and electronics. Rather than a monograph on detailed advanced research in a speci?c area, it intends to introduce the reader to the fascinating ?eld of electron dynamics in semiconductors, a ?eld that, through its applications to electronics, greatly contributed to the transformationof all our lives in the second half of the twentieth century, and continues to provide surprises and new challenges. The ?eld is so extensive that it has been necessary to leave aside many subjects, while others could be dealt with only in terms of their basic principles. The book is divided into ?ve major parts. Part I moves from a survey of the fundamentals of classical and quantum physics to a brief review of basic semiconductor physics. Its purpose is to establish a common platform of language and symbols, and to make the entire treatment, as far as pos- ble, self-contained. Parts II and III, respectively, develop transport theory in bulk semiconductors in semiclassical and quantum frames. Part IV is devoted to semiconductor structures, including devices and mesoscopic coherent s- tems. Finally, Part V develops the basic theoretical tools of transport theory within the modern nonequilibrium Green-function formulation, starting from an introduction to second-quantization formalism.

Optical Properties of Semiconductor Quantum Dots

Author : Ulrike Woggon
Publisher : Springer
Page : 252 pages
File Size : 45,5 Mb
Release : 2014-03-12
Category : Technology & Engineering
ISBN : 3662148110

Get Book

Optical Properties of Semiconductor Quantum Dots by Ulrike Woggon Pdf

This book presents an overview of the current understanding of the physics of zero-dimensional semiconductors. It concentrates mainly on quantum dots of wide-gap semiconductors, but touches also on zero-dimensional systems based on silicon and III-V materials. After providing the reader with a theoretical background, the author illustrates the specific properties of three-dimensionally confined semiconductors, such as the size dependence of energy states, optical transitions, and dephasing mechanisms with the results from numerous experiments in linear and nonlinear spectroscopy. Technological concepts of the growth concepts and the potential of this new class of semiconductor materials for electro-optic and nonlinear optical devices are also discussed.

Quantum Mechanics

Author : David Ferry
Publisher : CRC Press
Page : 314 pages
File Size : 41,7 Mb
Release : 2020-12-15
Category : Science
ISBN : 9781000316490

Get Book

Quantum Mechanics by David Ferry Pdf

Quantum Mechanics: An Introduction for Device Physicists and Electrical Engineers, Third Edition provides a complete course in quantum mechanics for students of semiconductor device physics and electrical engineering. It provides the necessary background to quantum theory for those starting work on micro- and nanoelectronic structures and is particularly useful for those beginning work with modern semiconductors devices, lasers, and qubits. This book was developed from a course the author has taught for many years with a style and order of presentation of material specifically designed for this audience. It introduces the main concepts of quantum mechanics which are important in everyday solid-state physics and electronics. Each topic includes examples which have been carefully chosen to draw upon relevant experimental research. It also includes problems with solutions to test understanding of theory. Full updated throughout, the third edition contains the latest developments, experiments, and device concepts, in addition to three fully revised chapters on operators and expectations and spin angular momentum, it contains completely new material on superconducting devices and approaches to quantum computing.

Semiconductor Cavity Quantum Electrodynamics

Author : Y. Yamamoto,F. Tassone,H. Cao
Publisher : Springer
Page : 156 pages
File Size : 44,6 Mb
Release : 2003-07-01
Category : Science
ISBN : 9783540455158

Get Book

Semiconductor Cavity Quantum Electrodynamics by Y. Yamamoto,F. Tassone,H. Cao Pdf

This monograph is the first to give a comprehensive account of the theory of semiconductor cavity quantum electrodynamics for such systems in the weak-coupling and strong-coupling regimes. It presents the important concepts, together with relevant, recent experimental results.

Fundamentals of Semiconductor Physics and Devices

Author : Rolf Enderlein,Norman J Horing
Publisher : World Scientific
Page : 792 pages
File Size : 42,5 Mb
Release : 1997-02-27
Category : Science
ISBN : 9789814499958

Get Book

Fundamentals of Semiconductor Physics and Devices by Rolf Enderlein,Norman J Horing Pdf

This book is an introduction to the principles of semiconductor physics, linking its scientific aspects with practical applications. It is addressed to both readers who wish to learn semiconductor physics and those seeking to understand semiconductor devices. It is particularly well suited for those who want to do both. Intended as a teaching vehicle, the book is written in an expository manner aimed at conveying a deep and coherent understanding of the field. It provides clear and complete derivations of the basic concepts of modern semiconductor physics. The mathematical arguments and physical interpretations are well balanced: they are presented in a measure designed to ensure the integrity of the delivery of the subject matter in a fully comprehensible form. Experimental procedures and measured data are included as well. The reader is generally not expected to have background in quantum mechanics and solid state physics beyond the most elementary level. Nonetheless, the presentation of this book is planned to bring the student to the point of research/design capability as a scientist or engineer. Moreover, it is sufficiently well endowed with detailed knowledge of the field, including recent developments bearing on submicron semiconductor structures, that the book also constitutes a valuable reference resource. In Chapter 1, basic features of the atomic structures, chemical nature and the macroscopic properties of semiconductors are discussed. The band structure of ideal semiconductor crystals is treated in Chapter 2, together with the underlying one-electron picture and other fundamental concepts. Chapter 2 also provides the requisite background of the tight binding method and the k.p-method, which are later used extensively. The electron states of shallow and deep centers, clean semiconductor surfaces, quantum wells and superlattices, as well as the effects of external electric and magnetic fields, are treated in Chapter 3. The one- or multi-band effective mass theory is used wherever this method is applicable. A summary of group theory for application in semiconductor physics is given in an Appendix. Chapter 4 deals with the statistical distribution of charge carriers over the band and localized states in thermodynamic equilibrium. Non-equilibrium processes in semiconductors are treated in Chapter 5. The physics of semiconductor junctions (pn-, hetero-, metal-, and insulator-) is developed in Chapter 6 under conditions of thermodynamic equilibrium, and in Chapter 7 under non-equilibrium conditions. On this basis, the most important electronic and opto-electronic semiconductor devices are treated, among them uni- and bi-polar transistors, photodetectors, solar cells, and injection lasers. A summary of group theory for applications in semiconductors is given in an Appendix. Contents:Characterization of SemiconductorsElectronic Structure of Ideal CrystalsElectronic Structure of Semiconductor Crystals with PerturbationsElectron System in Thermodynamic EquilibriumNon-Equilibrium Processes in SemiconductorsSemiconductor Junctions in Thermodynamic EquilibriumSemiconductor Junctions Under Non-Equilibrium Conditions Readership: Undergraduates, graduates and researchers in the fields of physics and engineering. keywords:Semiconductors;Transistor;Devices;Heterojunctions;Microstructures;Band-Structure;Luttinger-Kohn-Model;Kane-Model;Deep-Levels;Transport;Semiconductor Physics;Fundamental Physical Phenomena;General Backround;Characterization of Semiconductor;Electronic Structur of Semiconductors;Semiconductor Junctions the Thermodynamic Equilibrium;Semiconductor Junctions Under Non-Equilibrium Conductions; “… The reader who has only a first acquaintance with semiconductor physics will find that this book has fully detailed explanations of the fundamental physical phenomena, providing a good general background … A brilliant discussion of artifical atomic superstructures of nanometer length scale establishes a link to the most active field of semiconductor physics … In my opinion the book of R Enderlein and N J M Horing Fundamentals of Semiconductor Physics and Devices is a valuable contribution to the modern didactic literature on the physics of semiconductors. Morever, it is of considerable value as a reference for specialists as well.” J T Devreese Professor at the Physics Department University of Antwerpen, Belgium “In Fundamentals of Semiconductor Physics and Devices, R Enderiein and N J M Horing have provided a very extensive and detailed text on the physics underlying semiconductor devices. More so than any other current text, this book provides a greatly expanded discussion of modern tight-binding methods, helping the students to understand these aspects of electronic structure in clear, simple terms. In connection with this the authors offer a very detailed discussion of deep levels in semiconductors, which are so important to semiconducting properties. Also, in the discussion of transport properties, the book goes into much greater depth about nonlinear and nonequilibrium processes than is usual. It is quite a unique contribution, containing the basic physics which tends to be missing from device-oriented books, but going much further into the essentials needed for device development than any solid-state-physics text.” Walter A Harrison Professor of Applied Physics Stanford University, USA

An Introduction to Quantum Transport in Semiconductors

Author : David K. Ferry
Publisher : CRC Press
Page : 230 pages
File Size : 41,9 Mb
Release : 2017-12-14
Category : Science
ISBN : 9781351796378

Get Book

An Introduction to Quantum Transport in Semiconductors by David K. Ferry Pdf

Throughout their college career, most engineering students have done problems and studies that are basically situated in the classical world. Some may have taken quantum mechanics as their chosen field of study. This book moves beyond the basics to highlight the full quantum mechanical nature of the transport of carriers through nanoelectronic structures. The book is unique in that addresses quantum transport only in the materials that are of interest to microelectronics—semiconductors, with their variable densities and effective masses. The author develops Green’s functions starting from equilibrium Green’s functions and going through modern time-dependent approaches to non-equilibrium Green’s functions, introduces relativistic bands for graphene and topological insulators and discusses the quantum transport changes that these bands induce, and discusses applications such as weak localization and phase breaking processes, resonant tunneling diodes, single-electron tunneling, and entanglement. Furthermore, he also explains modern ensemble Monte Carlo approaches to simulation of various approaches to quantum transport and the hydrodynamic approaches to quantum transport. All in all, the book describes all approaches to quantum transport in semiconductors, thus becoming an essential textbook for advanced graduate students in electrical engineering or physics.

Quantum Mechanics

Author : David K. Ferry
Publisher : CRC Press
Page : 308 pages
File Size : 43,9 Mb
Release : 1995-01-13
Category : Art
ISBN : UOM:39015032355151

Get Book

Quantum Mechanics by David K. Ferry Pdf

Quantum Mechanics: An Introduction for Device Physicists and Electrical Engineers addresses the theoretical basics for a group previously poorly catered for. It presents topics of relevance with due importance in a logical order. It is intended for graduate students who have taken a course in (semiconductor) materials and who have studied linear vector spaces and electromagnetic field theory.

Semiconductor Quantum Optics

Author : Mackillo Kira,Stephan W. Koch
Publisher : Cambridge University Press
Page : 658 pages
File Size : 50,6 Mb
Release : 2011-11-17
Category : Science
ISBN : 9781139502511

Get Book

Semiconductor Quantum Optics by Mackillo Kira,Stephan W. Koch Pdf

The emerging field of semiconductor quantum optics combines semiconductor physics and quantum optics, with the aim of developing quantum devices with unprecedented performance. In this book researchers and graduate students alike will reach a new level of understanding to begin conducting state-of-the-art investigations. The book combines theoretical methods from quantum optics and solid-state physics to give a consistent microscopic description of light-matter- and many-body-interaction effects in low-dimensional semiconductor nanostructures. It develops the systematic theory needed to treat semiconductor quantum-optical effects, such as strong light-matter coupling, light-matter entanglement, squeezing, as well as quantum-optical semiconductor spectroscopy. Detailed derivations of key equations help readers learn the techniques and nearly 300 exercises help test their understanding of the materials covered. The book is accompanied by a website hosted by the authors, containing further discussions on topical issues, latest trends and publications on the field. The link can be found at www.cambridge.org/9780521875097.