Physical Realizations Of Quantum Computing

Physical Realizations Of Quantum Computing Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Physical Realizations Of Quantum Computing book. This book definitely worth reading, it is an incredibly well-written.

Quantum Computing

Author : Mikio Nakahara,Tetsuo Ohmi
Publisher : CRC Press
Page : 439 pages
File Size : 52,9 Mb
Release : 2008-03-11
Category : Mathematics
ISBN : 9781420012293

Get Book

Quantum Computing by Mikio Nakahara,Tetsuo Ohmi Pdf

Covering both theory and progressive experiments, Quantum Computing: From Linear Algebra to Physical Realizations explains how and why superposition and entanglement provide the enormous computational power in quantum computing. This self-contained, classroom-tested book is divided into two sections, with the first devoted to the theoretical aspect

Physical Realizations of Quantum Computing

Author : Mikio Nakahara
Publisher : World Scientific
Page : 252 pages
File Size : 55,8 Mb
Release : 2006
Category : Computers
ISBN : 9789812774705

Get Book

Physical Realizations of Quantum Computing by Mikio Nakahara Pdf

The contributors of this volume are working at the forefront of various realizations of quantum computers. They survey the recent developments in each realization, in the context of the DiVincenzo criteria, including nuclear magnetic resonance, Josephson junctions, quantum dots, and trapped ions. There are also some theoretical contributions which have relevance in the physical realizations of a quantum computer. This book fills the gap between elementary introductions to the subject and highly specialized research papers to allow beginning graduate students to understand the cutting-edge of research in the shortest possible time. Sample Chapter(s). Chapter 1: DiVincenzo Criteria and Beyond (537 KB). Contents: DiVincenzo Criteria and Beyond (M M Salomaa & M Nakahara); Single-Electron Charge and Spin Qubit in Semiconductor Quantum Dots (T Fujisawa); Superconducting Quantum Computing: Status and Prospects (F K Wilhelm & K Semba); Controlling Three Atomic Qubits (H Hnffer et al.); Liquid-State NMR Quantum Computer: Hamiltonian Formalism and Experiments (Y Kondo et al.); Optical Quantum Computation (K Nemoto & W J Munro). Readership: Graduates students and researchers in physics."

Molecular Realizations of Quantum Computing 2007

Author : Mikio Nakahara
Publisher : World Scientific
Page : 282 pages
File Size : 54,9 Mb
Release : 2009
Category : Computers
ISBN : 9789812838681

Get Book

Molecular Realizations of Quantum Computing 2007 by Mikio Nakahara Pdf

This book provides an overview on physical realizations of quantum computing by means of molecular systems. It will be useful for graduate students and researchers interested in quantum computing from different areas of physics, physical chemistry, informatics and computer science. Each chapter is written in a self-contained manner and hence can be accessible for researchers and graduate students with even less background in the topics.

Quantum Computer Science

Author : Marco Lanzagorta,Jeffrey K. Uhlmann
Publisher : Morgan & Claypool Publishers
Page : 125 pages
File Size : 40,6 Mb
Release : 2009
Category : Algorithms
ISBN : 9781598297324

Get Book

Quantum Computer Science by Marco Lanzagorta,Jeffrey K. Uhlmann Pdf

In this text we present a technical overview of the emerging field of quantum computation along with new research results by the authors. What distinguishes our presentation from that of others is our focus on the relationship between quantum computation and computer science. Specifically, our emphasis is on the computational model of quantum computing rather than on the engineering issues associated with its physical implementation. We adopt this approach for the same reason that a book on computer programming doesn't cover the theory and physical realization of semiconductors. Another distinguishing feature of this text is our detailed discussion of the circuit complexity of quantum algorithms. To the extent possible we have presented the material in a form that is accessible to the computer scientist, but in many cases we retain the conventional physics notation so that the reader will also be able to consult the relevant quantum computing literature. Although we expect the reader to have a solid understanding of linear algebra, we do not assume a background in physics. This text is based on lectures given as short courses and invited presentations around the world, and it has been used as the primary text for a graduate course at George Mason University. In all these cases our challenge has been the same: how to present to a general audience a concise introduction to the algorithmic structure and applications of quantum computing on an extremely short period of time. The feedback from these courses and presentations has greatly aided in making our exposition of challenging concepts more accessible to a general audience. Table of Contents: Introduction / The Algorithmic Structure of Quantum Computing / Advantages and Limitations of Quantum Computing / Amplitude Amplification / Case Study: Computational Geometry / The Quantum Fourier Transform / Case Study: The Hidden Subgroup / Circuit Complexity Analysis of Quantum Algorithms / Conclusions / Bibliography

Quantum Computing

Author : National Academies of Sciences, Engineering, and Medicine,Division on Engineering and Physical Sciences,Intelligence Community Studies Board,Computer Science and Telecommunications Board,Committee on Technical Assessment of the Feasibility and Implications of Quantum Computing
Publisher : National Academies Press
Page : 273 pages
File Size : 51,7 Mb
Release : 2019-04-27
Category : Computers
ISBN : 9780309479691

Get Book

Quantum Computing by National Academies of Sciences, Engineering, and Medicine,Division on Engineering and Physical Sciences,Intelligence Community Studies Board,Computer Science and Telecommunications Board,Committee on Technical Assessment of the Feasibility and Implications of Quantum Computing Pdf

Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.

Quantum Information Processing and Quantum Error Correction

Author : Ivan Djordjevic
Publisher : Academic Press
Page : 597 pages
File Size : 48,6 Mb
Release : 2012-04-16
Category : Computers
ISBN : 9780123854919

Get Book

Quantum Information Processing and Quantum Error Correction by Ivan Djordjevic Pdf

Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction - everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits

Physical Implementation of Quantum Walks

Author : Kia Manouchehri,Jingbo Wang
Publisher : Springer Science & Business Media
Page : 252 pages
File Size : 41,8 Mb
Release : 2013-08-23
Category : Computers
ISBN : 9783642360145

Get Book

Physical Implementation of Quantum Walks by Kia Manouchehri,Jingbo Wang Pdf

Given the extensive application of random walks in virtually every science related discipline, we may be at the threshold of yet another problem solving paradigm with the advent of quantum walks. Over the past decade, quantum walks have been explored for their non-intuitive dynamics, which may hold the key to radically new quantum algorithms. This growing interest has been paralleled by a flurry of research into how one can implement quantum walks in laboratories. This book presents numerous proposals as well as actual experiments for such a physical realization, underpinned by a wide range of quantum, classical and hybrid technologies.

Quantum Computation and Quantum Information

Author : Michael A. Nielsen,Isaac L. Chuang
Publisher : Cambridge University Press
Page : 709 pages
File Size : 42,6 Mb
Release : 2010-12-09
Category : Science
ISBN : 9781139495486

Get Book

Quantum Computation and Quantum Information by Michael A. Nielsen,Isaac L. Chuang Pdf

One of the most cited books in physics of all time, Quantum Computation and Quantum Information remains the best textbook in this exciting field of science. This 10th anniversary edition includes an introduction from the authors setting the work in context. This comprehensive textbook describes such remarkable effects as fast quantum algorithms, quantum teleportation, quantum cryptography and quantum error-correction. Quantum mechanics and computer science are introduced before moving on to describe what a quantum computer is, how it can be used to solve problems faster than 'classical' computers and its real-world implementation. It concludes with an in-depth treatment of quantum information. Containing a wealth of figures and exercises, this well-known textbook is ideal for courses on the subject, and will interest beginning graduate students and researchers in physics, computer science, mathematics, and electrical engineering.

Quantum Approach to Informatics

Author : Stig Stenholm,Kalle-Antti Suominen
Publisher : John Wiley & Sons
Page : 252 pages
File Size : 53,9 Mb
Release : 2005-09-02
Category : Computers
ISBN : 9780471739357

Get Book

Quantum Approach to Informatics by Stig Stenholm,Kalle-Antti Suominen Pdf

An essential overview of quantum information Information, whether inscribed as a mark on a stone tablet or encoded as a magnetic domain on a hard drive, must be stored in a physical object and thus made subject to the laws of physics. Traditionally, information processing such as computation occurred in a framework governed by laws of classical physics. However, information can also be stored and processed using the states of matter described by non-classical quantum theory. Understanding this quantum information, a fundamentally different type of information, has been a major project of physicists and information theorists in recent years, and recent experimental research has started to yield promising results. Quantum Approach to Informatics fills the need for a concise introduction to this burgeoning new field, offering an intuitive approach for readers in both the physics and information science communities, as well as in related fields. Only a basic background in quantum theory is required, and the text keeps the focus on bringing this theory to bear on contemporary informatics. Instead of proofs and other highly formal structures, detailed examples present the material, making this a uniquely accessible introduction to quantum informatics. Topics covered include: * An introduction to quantum information and the qubit * Concepts and methods of quantum theory important for informatics * The application of information concepts to quantum physics * Quantum information processing and computing * Quantum gates * Error correction using quantum-based methods * Physical realizations of quantum computing circuits A helpful and economical resource for understanding this exciting new application of quantum theory to informatics, Quantum Approach to Informatics provides students and researchers in physics and information science, as well as other interested readers with some scientific background, with an essential overview of the field.

Quantum Computer Science

Author : Marco Lanzagorta,Jeffrey Uhlmann
Publisher : Springer Nature
Page : 121 pages
File Size : 51,9 Mb
Release : 2022-05-31
Category : Mathematics
ISBN : 9783031025129

Get Book

Quantum Computer Science by Marco Lanzagorta,Jeffrey Uhlmann Pdf

In this text we present a technical overview of the emerging field of quantum computation along with new research results by the authors. What distinguishes our presentation from that of others is our focus on the relationship between quantum computation and computer science. Specifically, our emphasis is on the computational model of quantum computingrather than on the engineering issues associated with its physical implementation. We adopt this approach for the same reason that a book on computer programming doesn't cover the theory and physical realization of semiconductors. Another distinguishing feature of this text is our detailed discussion of the circuit complexity of quantum algorithms. To the extent possible we have presented the material in a form that is accessible to the computer scientist, but in many cases we retain the conventional physics notation so that the reader will also be able to consult the relevant quantum computing literature. Although we expect the reader to have a solid understanding of linear algebra, we do not assume a background in physics. This text is based on lectures given as short courses and invited presentations around the world, and it has been used as the primary text for a graduatecourse at George Mason University. In all these cases our challenge has been the same: how to present to a generalaudience a concise introduction to the algorithmic structure and applications of quantum computing on an extremely short period of time. The feedback from these courses and presentations has greatly aided in making our exposition of challenging concepts more accessible to a general audience. Table of Contents: Introduction / The Algorithmic Structure of Quantum Computing / Advantages and Limitations of Quantum Computing / Amplitude Amplification / Case Study: Computational Geometry / The Quantum Fourier Transform / Case Study: The Hidden Subgroup / Circuit Complexity Analysis of Quantum Algorithms / Conclusions / Bibliography

A Short Introduction to Quantum Information and Quantum Computation

Author : Michel Le Bellac
Publisher : Cambridge University Press
Page : 179 pages
File Size : 47,5 Mb
Release : 2006-06-15
Category : Science
ISBN : 9781139457040

Get Book

A Short Introduction to Quantum Information and Quantum Computation by Michel Le Bellac Pdf

Quantum information and computation is a rapidly expanding and cross-disciplinary subject. This book, first published in 2006, gives a self-contained introduction to the field for physicists, mathematicians and computer scientists who want to know more about this exciting subject. After a step-by-step introduction to the quantum bit (qubit) and its main properties, the author presents the necessary background in quantum mechanics. The core of the subject, quantum computation, is illustrated by a detailed treatment of three quantum algorithms: Deutsch, Grover and Shor. The final chapters are devoted to the physical implementation of quantum computers, including the most recent aspects, such as superconducting qubits and quantum dots, and to a short account of quantum information. Written at a level suitable for undergraduates in physical sciences, no previous knowledge of quantum mechanics is assumed, and only elementary notions of physics are required. The book includes many short exercises, with solutions available to instructors through [email protected].

Introduction to Quantum Computers

Author : Gennady P. Berman
Publisher : World Scientific
Page : 200 pages
File Size : 54,6 Mb
Release : 1998
Category : Computers
ISBN : 9810235496

Get Book

Introduction to Quantum Computers by Gennady P. Berman Pdf

Quantum computing promises to solve problems which are intractable on digital computers. Highly parallel quantum algorithms can decrease the computational time for some problems by many orders of magnitude. This important book explains how quantum computers can do these amazing things. Several algorithms are illustrated: the discrete Fourier transform, Shor's algorithm for prime factorization; algorithms for quantum logic gates; physical implementations of quantum logic gates in ion traps and in spin chains; the simplest schemes for quantum error correction; correction of errors caused by imperfect resonant pulses; correction of errors caused by the nonresonant actions of a pulse; and numerical simulations of dynamical behavior of the quantum Control-Not gate. An overview of some basic elements of computer science is presented, including the Turing machine, Boolean algebra, and logic gates. The required quantum ideas are explained.

Quantum Computing in Solid State Systems

Author : Berardo Ruggiero,Per Delsing,Carmine Granata,Yuri A. Pashkin,P. Silvestrini
Publisher : Springer Science & Business Media
Page : 337 pages
File Size : 55,9 Mb
Release : 2006-05-30
Category : Science
ISBN : 9780387311432

Get Book

Quantum Computing in Solid State Systems by Berardo Ruggiero,Per Delsing,Carmine Granata,Yuri A. Pashkin,P. Silvestrini Pdf

Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing for information processing devices; in particular observations of quantum behavior in several solid state systems are presented. The complementary theoretical contributions provide models of minimizing decoherence in the different systems. Most recent theoretical and experimental results on macroscopic quantum coherence of mesoscopic systems, as well as the realization of solid-state qubits and quantum gates are discussed. Particular attention is given to coherence effects in Josephson devices. Other solid state systems---including quantum dots, optical, ion, and spin devices---are also discussed.

Quantum Computing

Author : Joachim Stolze,Dieter Suter
Publisher : John Wiley & Sons
Page : 255 pages
File Size : 55,9 Mb
Release : 2008-09-26
Category : Science
ISBN : 9783527617777

Get Book

Quantum Computing by Joachim Stolze,Dieter Suter Pdf

The result of a lecture series, this textbook is oriented towards students and newcomers to the field and discusses theoretical foundations as well as experimental realizations in detail. The authors are experienced teachers and have tailored this book to the needs of students. They present the basics of quantum communication and quantum information processing, leading readers to modern technical implementations. In addition, they discuss errors and decoherence as well as methods of avoiding and correcting them.