Signal Processing For 5g

Signal Processing For 5g Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Signal Processing For 5g book. This book definitely worth reading, it is an incredibly well-written.

Signal Processing for 5G

Author : Fa-Long Luo,Charlie Jianzhong Zhang
Publisher : John Wiley & Sons
Page : 616 pages
File Size : 46,5 Mb
Release : 2016-08-04
Category : Technology & Engineering
ISBN : 9781119116479

Get Book

Signal Processing for 5G by Fa-Long Luo,Charlie Jianzhong Zhang Pdf

A comprehensive and invaluable guide to 5G technology, implementation and practice in one single volume. For all things 5G, this book is a must-read. Signal processing techniques have played the most important role in wireless communications since the second generation of cellular systems. It is anticipated that new techniques employed in 5G wireless networks will not only improve peak service rates significantly, but also enhance capacity, coverage, reliability , low-latency, efficiency, flexibility, compatibility and convergence to meet the increasing demands imposed by applications such as big data, cloud service, machine-to-machine (M2M) and mission-critical communications. This book is a comprehensive and detailed guide to all signal processing techniques employed in 5G wireless networks. Uniquely organized into four categories, New Modulation and Coding, New Spatial Processing, New Spectrum Opportunities and New System-level Enabling Technologies, it covers everything from network architecture, physical-layer (down-link and up-link), protocols and air interface, to cell acquisition, scheduling and rate adaption, access procedures and relaying to spectrum allocations. All technology aspects and major roadmaps of global 5G standard development and deployments are included in the book. Key Features: Offers step-by-step guidance on bringing 5G technology into practice, by applying algorithms and design methodology to real-time circuit implementation, taking into account rapidly growing applications that have multi-standards and multi-systems. Addresses spatial signal processing for 5G, in particular massive multiple-input multiple-output (massive-MIMO), FD-MIMO and 3D-MIMO along with orbital angular momentum multiplexing, 3D beamforming and diversity. Provides detailed algorithms and implementations, and compares all multicarrier modulation and multiple access schemes that offer superior data transmission performance including FBMC, GFDM, F-OFDM, UFMC, SEFDM, FTN, MUSA, SCMA and NOMA. Demonstrates the translation of signal processing theories into practical solutions for new spectrum opportunities in terms of millimeter wave, full-duplex transmission and license assisted access. Presents well-designed implementation examples, from individual function block to system level for effective and accurate learning. Covers signal processing aspects of emerging system and network architectures, including ultra-dense networks (UDN), software-defined networks (SDN), device-to-device (D2D) communications and cloud radio access network (C-RAN).

5G Spectrum and Standards

Author : Geoff Varrall
Publisher : Artech House
Page : 360 pages
File Size : 49,7 Mb
Release : 2016-05-31
Category : Technology & Engineering
ISBN : 9781630813666

Get Book

5G Spectrum and Standards by Geoff Varrall Pdf

This new resource provides key insight into future 5G radio systems and the technical and economic impact on industries, communities and end-users. The book offers a comprehensive understanding of the options available for teams tasked with bringing 5G products and services to market or developing supporting standards and regulatory frameworks. Readers find contemporary examples of millimeter band radio hardware including 60 GHz and V band and E Band point to point radio. This book demonstrates the profound progress with 4G radio signal processing and RF hardware to reveal its potential applicability to 5G radio systems. It shows how 5G systems are capable of delivering data rates that are ten to one hundred times faster than 4G systems. Developments in spatial processing and beam forming in local area radio networks are presented and the challenge of scaling these systems to wide area radio is explored. This book reviews military and space radio and automotive radar innovation with direct relevance to 5G radio design.

Cell-Free Massive MIMO

Author : Giovanni Interdonato
Publisher : Linköping University Electronic Press
Page : 75 pages
File Size : 47,8 Mb
Release : 2020-09-09
Category : Electronic books
ISBN : 9789179298081

Get Book

Cell-Free Massive MIMO by Giovanni Interdonato Pdf

The fifth generation of mobile communication systems (5G) is nowadays a reality. 5G networks are been deployed all over the world, and the first 5G-capable devices (e.g., smartphones, tablets, wearable, etc.) are already commercially available. 5G systems provide unprecedented levels of connectivity and quality of service (QoS) to cope with the incessant growth in the number of connected devices and the huge increase in data-rate demand. Massive MIMO (multiple-input multiple-output) technology plays a key role in 5G systems. The underlying principle of this technology is the use of a large number of co-located antennas at the base station, which coherently transmit/receive signals to/from multiple users. This signal co-processing at multiple antennas leads to manifold benefits: array gain, spatial diversity and spatial user multiplexing. These elements enable to meet the QoS requirements established for the 5G systems. The major bottleneck of massive MIMO systems as well as of any cellular network is the inter-cell interference, which affects significantly the cell-edge users, whose performance is already degraded by the path attenuation. To overcome these limitations and provide uniformly excellent service to all the users we need a more radical approach: we need to challenge the cellular paradigm. In this regard, cell-free massive MIMO constitutes the paradigm shift. In the cell-free paradigm, it is not the base station surrounded by the users, but rather it is each user being surrounded by smaller, simpler, serving base stations referred to as access points (APs). In such a system, each user experiences being in the cell-center, and it does not experience any cell boundaries. Hence, the terminology cell-free. As a result, users are not affected by inter-cell interference, and the path attenuation is significantly reduced due to the presence of many APs in their proximity. This leads to impressive performance. Although appealing from the performance viewpoint, the designing and implementation of such a distributed massive MIMO system is a challenging task, and it is the object of this thesis. More specifically, in this thesis we study: Paper A) The large potential of this promising technology in realistic indoor/outdoor scenarios while also addressing practical deployment issues, such as clock synchronization among APs, and cost-efficient implementations. We provide an extensive description of a cell-free massive MIMO system, emphasizing strengths and weaknesses, and pointing out differences and similarities with existing distributed multiple antenna systems, such as Coordinated MultiPoint (CoMP). Paper B) How to preserve the scalability of the system, by proposing a solution related to data processing, network topology and power control. We consider a realistic scenario where multiple central processing units serve disjoint subsets of APs, and compare the spectral efficiency provided by the proposed scalable framework with the canonical cell-free massive MIMO and CoMP. Paper C) How to improve the spectral efficiency (SE) in the downlink (DL), by devising two distributed precoding schemes, referred to as local partial zero-forcing (ZF) and local protective partial ZF, that provide an adaptable trade-off between interference cancelation and boosting of the desired signal, with no additional front-haul overhead, and that are implementable by APs with very few antennas. We derive closed-form expressions for the achievable SE under the assumption of independent Rayleigh fading channel, channel estimation error and pilot contamination. These closed-form expressions are then used to devise optimal max-min fairness power control. Paper D) How to further improve the SE by letting the user estimate the DL channel from DL pilots, instead of relying solely on the knowledge of the channel statistics. We derive an approximate closed-form expression of the DL SE for conjugate beamforming (CB), and assuming independent Rayleigh fading. This expression accounts for beamformed DL pilots, estimation errors and pilot contamination at both the AP and the user side. We devise a sequential convex approximation algorithm to globally solve the max-min fairness power control optimization problem, and a greedy algorithm for uplink (UL) and DL pilot assignment. The latter consists in jointly selecting the UL and DL pilot pair, for each user, that maximizes the smallest SE in the network. Paper E) A precoding scheme that is more suitable when only the channel statistics are available at the users, referred to as enhanced normalized CB. It consists in normalizing the precoding vector by its squared norm in order to reduce the fluctuations of the effective channel seen at the user, and thereby to boost the channel hardening. The performance achieved by this scheme is compared with the CB scheme with DL training (described in Paper D). Paper F) A maximum-likelihood-based method to estimate the channel statistics in the UL, along with an accompanying pilot transmission scheme, that is particularly useful in line-of-sight operation and in scenarios with resource constraints. Pilots are structurally phase-rotated over different coherence blocks to create an effective statistical distribution of the received pilot signal that can be efficiently exploited by the AP when performing the proposed estimation method. The overall conclusion is that cell-free massive MIMO is not a utopia, and a practical, distributed, scalable, high-performance system can be implemented. Today it represents a hot research topic, but tomorrow it might represent a key enabler for beyond-5G technology, as massive MIMO has been for 5G. La quinta generazione dei sistemi radiomobili cellulari (5G) è oggi una realtà. Le reti 5G si stanno diffondendo in tutto il mondo e i dispositivi 5G (ad esempio smartphones, tablets, indossabili, ecc.) sono già disponibili sul mercato. I sistemi 5G garantiscono livelli di connettività e di qualità di servizio senza precedenti, per fronteggiare l’incessante crescita del numero di dispositivi connessi alla rete e della domanda di dati ad alta velocità. La tecnologia Massive MIMO (multiple-input multiple-output) riveste un ruolo fondamentale nei sistemi 5G. Il principio alla base di questa tecnologia è l’impiego di un elevato numero di antenne collocate nella base station (stazione radio base) le quali trasmettono/ricevono segnali, in maniere coerente, a/da più terminali utente. Questo co-processamento del segnale da parte di più antenne apporta molteplici benefici: guadagno di array, diversità spaziale e multiplazione degli utenti nel dominio spaziale. Questi elementi consentono di raggiungere i requisiti di servizio stabiliti per i sistemi 5G. Tuttavia, il limite principale dei sistemi massive MIMO, così come di ogni rete cellulare, è rappresentato dalla interferenza inter-cella (ovvero l’interferenza tra aree di copertura gestite da diverse base stations), la quale riduce in modo significativo le performance degli utenti a bordo cella, già degradate dalle attenuazioni del segnale dovute alla considerevole distanza dalla base station. Per superare queste limitazioni e fornire una qualità del servizio uniformemente eccellente a tutti gli utenti, è necessario un approccio più radicale e guardare oltre il classico paradigma cellulare che caratterizza le attuali architetture di rete. A tal proposito, cell-free massive MIMO (massive MIMO senza celle) costituisce un cambio di paradigma: ogni utente è circondato e servito contemporaneamente da numerose, semplici e di dimensioni ridotte base stations, denominate access points (punti di accesso alla rete). Gli access points cooperano per servire tutti gli utenti nella loro area di copertura congiunta, eliminando l’interferenza inter-cella e il concetto stesso di cella. Non risentendo più dell’effetto “bordo-cella”, gli utenti possono usufruire di qualità di servizio e velocità dati eccellenti. Sebbene attraente dal punto di vista delle performance, l’implementazione di un tale sistema distribuito è una operazione impegnativa ed è oggetto di questa tesi. Piu specificatamente, questa tesi di dottorato tratta: Articolo A) L’enorme potenziale di questa promettente tecnologia in scenari realistici sia indoor che outdoor, proponendo anche delle soluzioni di implementazione flessibili ed a basso costo. Articolo B) Come preservare la scalabilità del sistema, proponendo soluzioni distribuite riguardanti il processamento e la condivisione dei dati, l’architettura di rete e l’allocazione di potenza, ovvero come ottimizzare i livelli di potenza trasmessa dagli access points per ridurre l’interferenza tra utenti e migliorare le performance. Articolo C) Come migliorare l’efficienza spettrale in downlink (da access point verso utente) proponendo due schemi di pre-codifica dei dati di trasmissione, denominati local partial zero-forcing (ZF) e local protective partial ZF, che forniscono un perfetto compromesso tra cancellazione dell’interferenza tra utenti ed amplificazione del segnale desiderato. Articolo D) Come migliorare l’efficienza spettrale in downlink permettendo al terminale utente di stimare le informazioni sulle condizioni istantanee del canale da sequenze pilota, piuttosto che basarsi su informazioni statistiche ed a lungo termine, come convenzionalmente previsto. Articolo E) In alternativa alla soluzione precedente, uno schema di pre-codifica che è più adatto al caso in cui gli utenti hanno a disposizione esclusivamente informazioni statistiche sul canale per poter effettuare la decodifica dei dati. Articolo F) Un metodo per permettere agli access points di stimare, in maniera rapida, le condizioni di canale su base statistica, favorito da uno schema di trasmissione delle sequenze pilota basato su rotazione di fase. Realizzare un sistema cell-free massive MIMO pratico, distribuito, scalabile e performante non è una utopia. Oggi questo concept rappresenta un argomento di ricerca interessante, attraente e stimolante ma in futuro potrebbe costituire un fattore chiave per le tecnologie post-5G, proprio come massive MIMO lo è stato per il 5G. Den femte generationens mobilkommunikationssystem (5G) är numera en verklighet. 5G-nätverk är utplacerade på ett flertal platser världen över och de första 5G-kapabla terminalerna (såsom smarta telefoner, surfplattor, kroppsburna apparater, etc.) är redan kommersiellt tillgängliga. 5G-systemen kan tillhandahålla tidigare oöverträffade nivåer av uppkoppling och servicekvalitet och är designade för en fortsatt oavbruten tillväxt i antalet uppkopplade apparater och ökande datataktskrav. Massiv MIMO-teknologi (eng: multiple-input multiple-output) spelar en nyckelroll i dagens 5G-system. Principen bakom denna teknik är användningen av ett stort antal samlokaliserade antenner vid basstationen, där alla antennerna sänder och tar emot signaler faskoherent till och från flera användare. Gemensam signalbehandling av många antennsignaler ger ett flertal fördelar, såsom hög riktverkan via lobformning, vilket leder till högre datatakter samt möjliggör att flera användare utnyttjar samma radioresurser via rumslig användarmultiplexering. Eftersom en signal kan gå genom flera olika, möjligen oberoende kanaler, så utsätts den för flera olika förändringar samtidigt. Denna mångfald ökar kvaliteten på signalen vid mottagaren och förbättrar radiolänkens robusthet och tillförlitlighet. Detta gör det möjligt att uppfylla de höga kraven på servicekvalitet som fastställts för 5G-systemen. Den största begränsningen för massiva MIMO-system såväl som för alla cellulära mobilnätverk, är störningar från andra celler som påverkar användare på cellkanten väsentligt, vars prestanda redan begränsas av sträckdämpningen på radiokanalen. För att övervinna dessa begränsningar och för att kunna tillhandahålla samma utmärkta servicekvalitet till alla användare behöver vi ett mer radikalt angreppssätt: vi måste utmana cellparadigmet. I detta avseende utgör cellfri massiv-MIMO teknik ett paradigmskifte. I cellfri massive-MIMO är utgångspunkten inte att basstationen är omgiven av användare som den betjänar, utan snarare att varje användare omges av basstationer som de betjänas av. Dessa basstationer, ofta mindre och enklare, kallas accesspunkter (AP). I ett sådant system upplever varje användare att den befinner sig i centrum av systemet och ingen användare upplever några cellgränser. Därav terminologin cellfri. Som ett resultat av detta påverkas inte användarna av inter-cellstörningar och sträckdämpningen reduceras kraftigt på grund av närvaron av många accesspunkter i varje användares närhet. Detta leder till imponerande prestanda. Även om det är tilltalande ur ett prestandaperspektiv så är utformningen och implementeringen av ett sådant distribuerat massivt MIMO-system en utmanande uppgift, och det är syftet med denna avhandling att studera detta. Mer specifikt studerar vi i denna avhandling: A) den mycket stora potentialen med denna teknik i realistiska inomhus- såväl som utomhusscenarier, samt hur man hanterar praktiska implementeringsproblem, såsom klocksynkronisering bland accesspunkter och kostnadseffektiva implementeringar; B) hur man ska uppnå skalbarhet i systemet genom att föreslå lösningar relaterade till databehandling, nätverkstopologi och effektkontroll; C) hur man ökar datahastigheten i nedlänken med hjälp av två nyutvecklade distribuerade överföringsmetoder som tillhandahåller en avvägning mellan störningsundertryckning och förstärkning av önskade signaler, utan att öka mängden intern signalering till de distribuerade accesspunkterna, och som kan implementeras i accesspunkter med mycket få antenner; D) hur man kan förbättra prestandan ytterligare genom att låta användaren estimera nedlänkskanalen med hjälp av nedlänkspiloter, istället för att bara förlita sig på kunskap om kanalstatistik; E) en överföringsmetod för nedlänk som är mer lämpligt när endast kanalstatistiken är tillgänglig för användarna. Prestandan som uppnås genom detta schema jämförs med en utökad variant av den nedlänk-pilotbaserade metoden (beskrivet i föregående punkt); F) en metod för att uppskatta kanalstatistiken i upplänken, samt en åtföljande pilotsändningsmetod, som är särskilt användbart vid direktvägsutbredning (line-of-sight) och i scenarier med resursbegränsningar. Den övergripande slutsatsen är att cellfri massiv MIMO inte är en utopi, och att ett distribuerat, skalbart, samt högpresterande system kan implementeras praktiskt. Idag representerar detta ett hett forskningsämne, men snart kan det visa sig vara en viktig möjliggörare för teknik bortom dagens system, på samma sätt som centraliserad massiv MIMO har varit för de nya 5G-systemen.

Signal Processing Aspects of Cell-Free Massive MIMO

Author : Giovanni Interdonato
Publisher : Linköping University Electronic Press
Page : 35 pages
File Size : 50,8 Mb
Release : 2019-03-20
Category : Electronic
ISBN : 9789176852248

Get Book

Signal Processing Aspects of Cell-Free Massive MIMO by Giovanni Interdonato Pdf

The fifth generation of mobile communication systems (5G) promises unprecedented levels of connectivity and quality of service (QoS) to satisfy the incessant growth in the number of mobile smart devices and the huge increase in data demand. One of the primary ways 5G network technology will be accomplished is through network densification, namely increasing the number of antennas per site and deploying smaller and smaller cells. Massive MIMO, where MIMO stands for multiple-input multiple-output, is widely expected to be a key enabler of 5G. This technology leverages an aggressive spatial multiplexing, from using a large number of transmitting/receiving antennas, to multiply the capacity of a wireless channel. A massive MIMO base station (BS) is equipped with a large number of antennas, much larger than the number of active users. The users are coherently served by all the antennas, in the same time-frequency resources but separated in the spatial domain by receiving very directive signals. By supporting such a highly spatially-focused transmission (precoding), massive MIMO provides higher spectral and energy efficiency, and reduces the inter-cell interference compared to existing mobile systems. The inter-cell interference is however becoming the major bottleneck as we densify the networks. It cannot be removed as long as we rely on a network-centric implementation, since the inter-cell interference concept is inherent to the cellular paradigm. Cell-free massive MIMO refers to a massive MIMO system where the BS antennas, herein referred to as access points (APs), are geographically spread out. The APs are connected, through a fronthaul network, to a central processing unit (CPU) which is responsible for coordinating the coherent joint transmission. Such a distributed architecture provides additional macro-diversity, and the co-processing at multiple APs entirely suppresses the inter-cell interference. Each user is surrounded by serving APs and experiences no cell boundaries. This user-centric approach, combined with the system scalability that characterizes the massive MIMO design, constitutes a paradigm shift compared to the conventional centralized and distributed wireless communication systems. On the other hand, such a distributed system requires higher capacity of back/front-haul connections, and the signal co-processing increases the signaling overhead. In this thesis, we focus on some signal processing aspects of cell-free massive MIMO. More specifically, we firstly investigate if the downlink channel estimation, via downlink pilots, brings gains to cell-free massive MIMO or the statistical channel state information (CSI) knowledge at the users is enough to reliably perform data decoding, as in conventional co-located massive MIMO. Allocating downlink pilots is costly resource-wise, thus we also propose resource saving-oriented strategies for downlink pilot assignment. Secondly, we study further fully distributed and scalable precoding schemes in order to outperform cell-free massive MIMO in its canonical form, which consists in single-antenna APs implementing conjugate beamforming (also known as maximum ratio transmission).

Towards 5G Wireless Networks

Author : Hossein Khaleghi Bizaki
Publisher : BoD – Books on Demand
Page : 246 pages
File Size : 53,7 Mb
Release : 2016-12-14
Category : Technology & Engineering
ISBN : 9789535128335

Get Book

Towards 5G Wireless Networks by Hossein Khaleghi Bizaki Pdf

This book intends to provide highlights of the current research topics in the field of 5G and to offer a snapshot of the recent advances and major issues faced today by the researchers in the 5G physical layer perspective. Various aspects of 5G system is deeply discussed (in three parts and ten chapters) with emphasis on its physical layer. Each chapter provides a comprehensive survey of the subject area and ends with a rich list of references to provide an in-depth coverage of the application at hand.

Inclusive Radio Communications for 5G and Beyond

Author : Claude Oestges,Francois Quitin
Publisher : Academic Press
Page : 396 pages
File Size : 47,6 Mb
Release : 2021-05-18
Category : Computers
ISBN : 9780128205822

Get Book

Inclusive Radio Communications for 5G and Beyond by Claude Oestges,Francois Quitin Pdf

Inclusive Radio Communication Networks for 5G and Beyond is based on the COST IRACON project that consists of 500 researchers from academia and industry, with 120 institutions from Europe, US and the Far East involved. The book presents state-of-the-art design and analysis methods for 5G (and beyond) radio communication networks, along with key challenges and issues related to the development of 5G networks. Covers the latest research on 5G networks – including propagation, localization, IoT and radio channels Based on the International COST research project, IRACON, with 120 institutions and 500 researchers from Europe, US and the Far East involved Provides coverage of IoT protocols, architectures and applications, along with IoT applications in healthcare Contains a concluding chapter on future trends in mobile communications and networking

mmWave Massive MIMO

Author : Shahid Mumtaz,Jonathan Rodriguez,Linglong Dai
Publisher : Academic Press
Page : 372 pages
File Size : 54,5 Mb
Release : 2016-12-02
Category : Technology & Engineering
ISBN : 9780128044780

Get Book

mmWave Massive MIMO by Shahid Mumtaz,Jonathan Rodriguez,Linglong Dai Pdf

mmWave Massive MIMO: A Paradigm for 5G is the first book of its kind to hinge together related discussions on mmWave and Massive MIMO under the umbrella of 5G networks. New networking scenarios are identified, along with fundamental design requirements for mmWave Massive MIMO networks from an architectural and practical perspective. Working towards final deployment, this book updates the research community on the current mmWave Massive MIMO roadmap, taking into account the future emerging technologies emanating from 3GPP/IEEE. The book's editors draw on their vast experience in international research on the forefront of the mmWave Massive MIMO research arena and standardization. This book aims to talk openly about the topic, and will serve as a useful reference not only for postgraduates students to learn more on this evolving field, but also as inspiration for mobile communication researchers who want to make further innovative strides in the field to mark their legacy in the 5G arena. Contains tutorials on the basics of mmWave and Massive MIMO Identifies new 5G networking scenarios, along with design requirements from an architectural and practical perspective Details the latest updates on the evolution of the mmWave Massive MIMO roadmap, considering future emerging technologies emanating from 3GPP/IEEE Includes contributions from leading experts in the field in modeling and prototype design for mmWave Massive MIMO design Presents an ideal reference that not only helps postgraduate students learn more in this evolving field, but also inspires mobile communication researchers towards further innovation

Recent Advances in Information, Communications and Signal Processing

Author : Andy W. H. Khong,Yong Liang Guan
Publisher : CRC Press
Page : 218 pages
File Size : 52,7 Mb
Release : 2022-09-01
Category : Technology & Engineering
ISBN : 9781000795929

Get Book

Recent Advances in Information, Communications and Signal Processing by Andy W. H. Khong,Yong Liang Guan Pdf

Research in information, communications and signal processing has brought about new services, applications and functions in a large number of fields which include consumer electronics, biomedical devices and defence. These applications play an important role in advancing technologies to enhance human life in general. Recent Advances in Information, Communications and Signal Processing aims to give students, researchers, and engineers information pertaining to recent advances in these fields. In terms of research in signal processing topics, the two chapters included in this book have a strong emphasis on advances in algorithmic development in the biomedical, and human-computer interfaces domain areas. More specifically, the use of deep learning for placental maturity staging is discussed as well as the use of vibration analysis for localising impacts on surfaces for human-computer applications. In terms of communications signal processing, advances in new wireless communication such as NOMA (non-orthogonal multiple access) and millimetre-wave antenna design for 5G cellular mobile radio, as well as innovations in LDPC (low density parity check code) decoding and networking coding, are featured.

5G Outlook – Innovations and Applications

Author : Ramjee Prasad
Publisher : CRC Press
Page : 259 pages
File Size : 51,8 Mb
Release : 2022-09-01
Category : Science
ISBN : 9781000795240

Get Book

5G Outlook – Innovations and Applications by Ramjee Prasad Pdf

5G Outlook - Innovations and Applications is a collection of the recent research and development in the area of the Fifth Generation Mobile Technology (5G), the future of wireless communications. Plenty of novel ideas and knowledge of the 5G are presented in this book as well as divers applications from health science to business modeling. The authors of different chapters contributed from various countries and organizations. The chapters have also been presented at the 5th IEEE 5G Summit held in Aalborg on July 1, 2016. The book starts with a comprehensive introduction on 5G and its need and requirement. Then millimeter waves as a promising spectrum to 5G technology is discussed. The book continues with the novel and inspiring ideas for the future wireless communication usage and network. Further, some technical issues in signal processing and network design for 5G are presented. Finally, the book ends up with different applications of 5G in distinct areas. Topics widely covered in this book are: • 5G technology from past to present to the future• Millimeter- waves and their characteristics• Signal processing and network design issues for 5G• Applications, business modeling and several novel ideas for the future of 5G

Signal Processing for Joint Radar Communications

Author : Kumar Vijay Mishra,M. R. Bhavani Shankar,Bjorn Ottersten,A. Lee Swindlehurst
Publisher : John Wiley & Sons
Page : 453 pages
File Size : 49,5 Mb
Release : 2024-04-09
Category : Technology & Engineering
ISBN : 9781119795551

Get Book

Signal Processing for Joint Radar Communications by Kumar Vijay Mishra,M. R. Bhavani Shankar,Bjorn Ottersten,A. Lee Swindlehurst Pdf

Signal Processing for Joint Radar Communications A one-stop, comprehensive source for the latest research in joint radar communications In Signal Processing for Joint Radar Communications, four eminent electrical engineers deliver a practical and informative contribution to the diffusion of newly developed joint radar communications (JRC) tools into the sensing and communications communities. This book illustrates recent successes in applying modern signal processing theories to core problems in JRC. The book offers new results on algorithms and applications of JRC from diverse perspectives, including waveform design, physical layer processing, privacy, security, hardware prototyping, resource allocation, and sampling theory. The distinguished editors bring together contributions from more than 40 leading JRC researchers working on remote sensing, electromagnetics, optimization, signal processing, and beyond 5G wireless networks. The included resources provide an in-depth mathematical treatment of relevant signal processing tools and computational methods allowing readers to take full advantage of JRC systems. Readers will also find: Thorough introductions to fundamental limits and background on JRC theory and applications, including dual-function radar communications, cooperative JRC, distributed JRC, and passive JRC Comprehensive explorations of JRC processing via waveform analyses, interference mitigation, and modeling with jamming and clutter Practical discussions of information-theoretic, optimization, and networking aspects of JRC In-depth examinations of JRC applications in cutting-edge scenarios including automotive systems, intelligent reflecting surfaces, and secure parameter estimation Perfect for researchers and professionals in the fields of radar, signal processing, communications, information theory, networking, and electronic warfare, Signal Processing for Joint Radar Communications will also earn a place in the libraries of engineers working in the defense, aerospace, wireless communications, and automotive industries.

Implementing Full Duplexing for 5G

Author : David B. Cruickshank
Publisher : Artech House
Page : 316 pages
File Size : 43,7 Mb
Release : 2020-05-31
Category : Technology & Engineering
ISBN : 9781630816964

Get Book

Implementing Full Duplexing for 5G by David B. Cruickshank Pdf

This exciting new book examines the feasibility of using a method of doubling the capacity of cellular networks by simultaneously transmitting and receiving signals at the same frequency, a process known as full duplexing (FD). To realize full duplexing, changes in the hardware of the cell- base stations, relaying equipment, “hot spot” access points and mobile phones are necessary to prevent the hardware’s transmitters from interfering with their own receivers. This requires looking at how to separate the strong transmitted signal from the very weak received signal, a process requiring both hardware (analog) changes and more complex digital signal processing. Different ways of achieving that goal are examined. The books reviews the merits of hardware changes involving new duplexing components that may be different depending on the frequency band and cell hardware being used. Developing full duplex (FD) systems in 5G LTE cellular communications and what can be achieved with ferrite-based circulators in terms of size reduction and performance enhancement, especially at millimetric frequencies, is considered. The relative merits of ferrite and non-ferrite circulators are compared in terms of their fundamental materials and device technologies, such as isolation, insertion loss, bandwidth and non-linearity. FD in the entire 5G cell is also examined and its resulting range of equipment and device communication. This includes front-hauling, more sophisticated back and front-hauling, backhaul beam switching, and cell extenders and relays, all of which could involve FD.

5G Wireless Systems

Author : Yang Yang,Jing Xu,Guang Shi,Cheng-Xiang Wang
Publisher : Springer
Page : 434 pages
File Size : 44,8 Mb
Release : 2017-09-14
Category : Technology & Engineering
ISBN : 9783319618692

Get Book

5G Wireless Systems by Yang Yang,Jing Xu,Guang Shi,Cheng-Xiang Wang Pdf

This book focuses on key simulation and evaluation technologies for 5G systems. Based on the most recent research results from academia and industry, it describes the evaluation methodologies in depth for network and physical layer technologies. The evaluation methods are discussed in depth. It also covers the analysis of the 5G candidate technologies and the testing challenges, the evolution of the testing technologies, fading channel measurement and modeling, software simulations, software hardware cosimulation, field testing and other novel evaluation methods. The fifth-generation (5G) mobile communications system targets highly improved network performances in terms of the network capacity and the number of connections. Testing and evaluation technologies is widely recognized and plays important roles in the wireless technology developments, along with the research on basic theory and key technologies. The investigation and developments on the multi-level and comprehensive evaluations for 5G new technologies, provides important performance references for the 5G technology filtering and future standardizations. Students focused on telecommunications, electronic engineering, computer science or other related disciplines will find this book useful as a secondary text. Researchers and professionals working within these related fields will also find this book useful as a reference.

Smart Antennas and Electromagnetic Signal Processing in Advanced Wireless Technology

Author : Paul R.P. Hoole
Publisher : CRC Press
Page : 450 pages
File Size : 44,9 Mb
Release : 2022-09-01
Category : Technology & Engineering
ISBN : 9781000793772

Get Book

Smart Antennas and Electromagnetic Signal Processing in Advanced Wireless Technology by Paul R.P. Hoole Pdf

The book addresses the current demand for a scientific approach to advanced wireless technology and its future developments. It gives a clear presentation of both antennas and adaptive signal processing which is what makes antennas powerful, maneuverable and necessary for advanced wireless technology. The book presents electromagnetic signal processing techniques that both control the antenna beam and track the moving station, which is required for effective, fast, dynamic beamforming. The first part of the book presents a comprehensive description and analysis of basic antenna theory, starting from short dipole antennas to array antennas. This section also includes important concepts related to antenna parameters, electromagnetic wave propagation, the Friis equation, the radar equation and wave reflection and transmission through media. The second part of the book focuses on smart antennas, commencing from a look at the traditional approach to beamforming before getting into the details of smart antennas. Complete derivation and description of the techniques for electromagnetic field signal processing techniques for adaptive beamforming are also presented. Artificial Intelligence (AI) driven beamforming is presented using computationally fast and low-memory demanding technique for AI beamforming is presented with the different excitation functions available. A novel method for fast, low memory and accurate, maneuverable single beam generation is presented, as well as other methods for beamforming with fewer elements along with a simple method for tracking the mobile antenna and station. In this section, for completeness, the use of antenna signal processing for synthetic aperture techniques for imaging is also presented, specifically the Inverse Synthetic Aperture Imaging technique. The third part of the book presents technological aspects of advanced wireless technology, including the 5G wireless system and the various devices needed to construct it. While the books’ main emphasis is theoretical understanding and design, it includes applications, and legal matters are also presented.

5G Networks

Author : Anwer Al-Dulaimi,Xianbin Wang,Chih-Lin I
Publisher : John Wiley & Sons
Page : 784 pages
File Size : 52,9 Mb
Release : 2018-09-11
Category : Technology & Engineering
ISBN : 9781119333951

Get Book

5G Networks by Anwer Al-Dulaimi,Xianbin Wang,Chih-Lin I Pdf

A reliable and focused treatment of the emergent technology of fifth generation (5G) networks This book provides an understanding of the most recent developments in 5G, from both theoretical and industrial perspectives. It identifies and discusses technical challenges and recent results related to improving capacity and spectral efficiency on the radio interface side, and operations management on the core network side. It covers both existing network technologies and those currently in development in three major areas of 5G: spectrum extension, spatial spectrum utilization, and core network and network topology management. It explores new spectrum opportunities; the capability of radio access technology; and the operation of network infrastructure and heterogeneous QoE provisioning. 5G Networks: Fundamental Requirements, Enabling Technologies, and Operations Management is split into five sections: Physical Layer for 5G Radio Interface Technologies; Radio Access Technology for 5G Networks; 5G Network Interworking and Core Network Advancements; Vertical 5G Applications; and R&D and 5G Standardization. It starts by introducing emerging technologies in 5G software, hardware, and management aspects before moving on to cover waveform design for 5G and beyond; code design for multi-user MIMO; network slicing for 5G networks; machine type communication in the 5G era; provisioning unlicensed LAA interface for smart grid applications; moving toward all-IT 5G end-to-end infrastructure; and more. This valuable resource: Provides a comprehensive reference for all layers of 5G networks Focuses on fundamental issues in an easy language that is understandable by a wide audience Includes both beginner and advanced examples at the end of each section Features sections on major open research challenges 5G Networks: Fundamental Requirements, Enabling Technologies, and Operations Management is an excellent book for graduate students, academic researchers, and industry professionals, involved in 5G technology.