Solid State Laser Engineering

Solid State Laser Engineering Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Solid State Laser Engineering book. This book definitely worth reading, it is an incredibly well-written.

Solid-State Laser Engineering

Author : Walter Koechner
Publisher : Springer
Page : 765 pages
File Size : 48,6 Mb
Release : 2007-11-06
Category : Science
ISBN : 9780387293387

Get Book

Solid-State Laser Engineering by Walter Koechner Pdf

Written from an industrial perspective this book discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. Since its first edition almost 30 years ago this book has become the standard in the field of solid-state lasers for scientists, engineers and graduate students. This edition has been extensively revised and updated to account for recent developments in the areas of diode-laser pumping, laser materials and nonlinear crystals, and entire new sections have been added.

Solid-State Laser Engineering

Author : Walter Koechner
Publisher : Springer
Page : 759 pages
File Size : 48,9 Mb
Release : 2013-11-11
Category : Science
ISBN : 9783662142196

Get Book

Solid-State Laser Engineering by Walter Koechner Pdf

This book has once again been updated to keep pace with recent developments and to maintain Koechner's position as "the bible" of the field. Written from an industrial perspective, it provides a detailed discussion of, and data for, solid-state lasers, their characteristics, design and construction.

Solid-State Lasers

Author : Walter Koechner,Michael Bass
Publisher : Springer Science & Business Media
Page : 420 pages
File Size : 49,7 Mb
Release : 2006-05-29
Category : Science
ISBN : 9780387217659

Get Book

Solid-State Lasers by Walter Koechner,Michael Bass Pdf

Koechner's well-known ‘bible’ on solid-state laser engineering is now available in an accessible format at the graduate level. Numerous exercises with hints for solution, new text and updated material where needed make this text very accessible.

The Physics and Engineering of Solid State Lasers

Author : Yehoshua Y. Kalisky
Publisher : SPIE Press
Page : 226 pages
File Size : 46,6 Mb
Release : 2006
Category : Science
ISBN : 081946094X

Get Book

The Physics and Engineering of Solid State Lasers by Yehoshua Y. Kalisky Pdf

Explains the mutual influences between the physical and dynamic processes in solids and their lasing properties. This book provides insight into the physics and engineering of solid state lasers by integrating information from several disciplines, including solid state physics, materials science, photophysics, and dynamic processes in solids.

Semiconductor Laser Engineering, Reliability and Diagnostics

Author : Peter W. Epperlein
Publisher : John Wiley & Sons
Page : 522 pages
File Size : 51,6 Mb
Release : 2013-03-18
Category : Technology & Engineering
ISBN : 9781119990338

Get Book

Semiconductor Laser Engineering, Reliability and Diagnostics by Peter W. Epperlein Pdf

This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performance- and reliability-impacting factors such as temperature, stress and material instabilities. Further key features include: practical design guidelines that consider also reliability related effects, key laser robustness factors, basic laser fabrication and packaging issues; detailed discussion of diagnostic investigations of diode lasers, the fundamentals of the applied approaches and techniques, many of them pioneered by the author to be fit-for-purpose and novel in the application; systematic insight into laser degradation modes such as catastrophic optical damage, and a wide range of technologies to increase the optical strength of diode lasers; coverage of basic concepts and techniques of laser reliability engineering with details on a standard commercial high power laser reliability test program. Semiconductor Laser Engineering, Reliability and Diagnostics reflects the extensive expertise of the author in the diode laser field both as a top scientific researcher as well as a key developer of high-power highly reliable devices. With invaluable practical advice, this new reference book is suited to practising researchers in diode laser technologies, and to postgraduate engineering students. Dr. Peter W. Epperlein is Technology Consultant with his own semiconductor technology consulting business Pwe-PhotonicsElectronics-IssueResolution in the UK. He looks back at a thirty years career in cutting edge photonics and electronics industries with focus on emerging technologies, both in global and start-up companies, including IBM, Hewlett-Packard, Agilent Technologies, Philips/NXP, Essient Photonics and IBM/JDSU Laser Enterprise. He holds Pre-Dipl. (B.Sc.), Dipl. Phys. (M.Sc.) and Dr. rer. nat. (Ph.D.) degrees in physics, magna cum laude, from the University of Stuttgart, Germany. Dr. Epperlein is an internationally recognized expert in compound semiconductor and diode laser technologies. He has accomplished R&D in many device areas such as semiconductor lasers, LEDs, optical modulators, quantum well devices, resonant tunneling devices, FETs, and superconducting tunnel junctions and integrated circuits. His pioneering work on sophisticated diagnostic research has led to many world’s first reports and has been adopted by other researchers in academia and industry. He authored more than seventy peer-reviewed journal papers, published more than ten invention disclosures in the IBM Technical Disclosure Bulletin, has served as reviewer of numerous proposals for publication in technical journals, and has won five IBM Research Division Awards. His key achievements include the design and fabrication of high-power, highly reliable, single mode diode lasers. Book Reviews “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Prof. em. Dr. Heinz Jäckel, High Speed Electronics and Photonics, Swiss Federal Institute of Technology ETH Zürich, Switzerland The book “Semiconductor Laser Engineering, Reliability and Diagnostics” by Dr. P.W. Epperlein is a landmark in the recent literature on semiconductor lasers because it fills a longstanding gap between many excellent books on laser theory and the complex and challenging endeavor to fabricate these devices reproducibly and reliably in an industrial, real world environment. Having worked myself in the early research and development of high power semiconductor lasers, I appreciate the competent, complete and skillful presentation of these three highly interrelated topics, where small effects have dramatic consequences on the success of a final product, on the ultimate performance and on the stringent reliability requirements, which are the name of the game. As the title suggests the author addresses three tightly interwoven and critical topics of state-of-the-art power laser research. The three parts are: device and mode stability engineering (chapter 1, 2), reliability mechanisms and reliability assessment strategies (chapter 3, 4, 5, 6) and finally material and device diagnostics (chapter 7, 8, 9) all treated with a strong focus on the implementation. This emphasis on the complex practical aspects for a large-scale power laser fabrication is a true highlight of the book. The subtle interplay between laser design, reliability strategies, advanced failure analysis and characterization techniques are elaborated in a very rigorous and scientific way using a very clear and easy to read representation of the complex interrelation of the three major topics. I will abstain from trying to provide a complete account of all the topics but mainly concentrate on the numerous highlights. The first part 1 “Laser Engineering” is divided in two chapters on basic electronic-optical, structural, material and resonator laser engineering on the one side, and on single mode control and stability at very high, still reliable power-levels with the trade-off between mirror damage, single mode stability on the other side. To round up the picture less well-known concepts and the state-of-the-art of large-area lasers, which can be forced into single-mode operation, are reviewed carefully. The subtle and complex interplay, which is challenging to optimize for a design for reliability and low stress as a major boundary condition is crucial for the design. The section gives a rather complete and well-referenced account of all relevant aspects, relations and trade-offs for understanding the rest of the book. The completeness of the presentation on power laser diode design based on basic physical and plausible arguments is mainly based on analytic mathematical relations as well as experiments providing a new and well-balanced addition for the power diode laser literature in particular. Modern 2D self-consistent electro-optical laser modeling including carrier hole burning and thermal effects – this is important because the weak optical guiding and gain-discrimination depend critically on rather small quantities and effects, which are difficult to optimize experimentally – is used in the book for simulation results, but is not treated separately. The novel and really original, “gap-filling” bulk of the book is elaborated by the author in a very clear way in the following four chapters in the part 2 “Laser Reliability” on laser degradation physics and mirror design and passivation at high power, followed then by two very application oriented chapters on reliability design engineering and practical reliability strategies and implementation procedures. This original combination of integral design and reliability aspects – which are mostly neglected in standard literature – is certainly a major plus of this book. I liked this second section as a whole, because it provides excellent insights in degradation physics on a high level and combines it in an interesting and skillful way with the less “glamorous” (unfortunately) but highly relevant reliability science and testing strategies, which is particularly important for devices operating at extreme optical stresses with challenging lifetime requirements in a real word environment. Finally, the last part 3 “Laser Diagnostics” comprising three chapters, is devoted mainly to advanced experimental diagnostics techniques for material integrity, mechanical stress, deep level defects, various dynamic laser degradation effects, surface- and interface quality, and most importantly heating and disordering of mirrors and mirror coatings. The topics of characterization techniques comprising micro-Raman- and micro-thermoreflectance-probing, 2K photoluminescence spectroscopy, micro-electroluminescence and photoluminescence scanning, and deep-level-transient spectroscopy have been pioneered by the author for the specific applications over many years guaranteeing many competent and well represented insights. These techniques are brilliantly discussed and the information distributed in many articles by the author has been successfully unified in a book form. In my personal judgment and liking, I consider the parts 2 and 3 on reliability and diagnostics as the most valuable and true novel contribution of the book, which in combination with the extremely well-covered laser design of part 1 clearly fill the gap in the current diode laser literature, which in this detail has certainly been neglected in the past. In summary, I can highly recommend this excellent, well-organized and clearly written book to readers who are already familiar with basic diode laser theory and who are active in the academic and industrial fabrication and characterization of semiconductor lasers. Due to its completeness, it also serves as an excellent reference of the current state-of-the-art in reliability engineering and device and material diagnostics. Needless to mention that the quality of the book, its representations and methodical structure meet the highest expectation and are certainly a tribute from the long and broad experience of the author in academic laser science and the industrial commercialization of high power diode lasers. In my opinion, this book was a pleasure to read and due to its quality and relevance deserves a large audience in the power diode laser community! Prof. em. Dr. Heinz Jäckel, High Speed Electronics and Photonics, Swiss Federal Institute of Technology ETH Zürich, Switzerland June 16, 2013 ========================================== “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Dr. Chung-en Zah, Research Director, Semiconductor Technologies Research, S&T Division, Corning Incorporate, Corning NY, USA This book covers for the first time the three closely interrelated key laser areas of engineering (design), reliability and diagnostics in one book, written by the well-known practitioner in cutting-edge optoelectronics industries, Dr. Peter W. Epperlein. The book closes the gap in the current book literature and is thus a unique and excellent example of how to merge design, reliability and diagnostics aspects in a very professional, profound and complete manner. All physical and technological principles, concepts and practical aspects required for developing and fabricating highly-reliable high-power single-mode laser products are precisely specified and skilfully formulated along with all the necessary equations, figures, tables and worked-out examples making it easy to follow through the nine chapters. Hence, this unique book is a milestone in the diode laser literature and is an excellent reference book not only for diode laser researchers and engineers, but also diode laser users. The engineering part starts with a very informative and clear, well-presented account of all necessary basic diode laser types, principles, parameters and characteristics for an easy and quick understanding of laser functionality within the context of the book. Along with an elaborate and broad discussion of relevant laser material systems, applications, typical output powers, power-limiting factors and reliability tradeoffs, basic fabrication and packaging technologies, this excellent introductory section is well suited to become quickly and easily familiar with practical aspects and issues of diode laser technologies. Of special importance and high usefulness is the first analytic and quantitative discussion in a book on issues of coupling laser power into optical single mode fibers. The second section discusses in a well-balanced, competent and skilful way waveguide topics such as basic high-power design approaches, transverse vertical and lateral waveguide concepts, stability of the fundamental transverse lateral mode and fundamental mode waveguide optimization techniques by considering detrimental effects such as heating, carrier injection, spatial hole burning, lateral current spreading and gain profile variations. Less well-known approaches to force large-area lasers into a single mode operation are well-identified and carefully discussed in depth and breadth. All these topics are elaborated in a very complete, rigorous and scientific way and are clearly articulated and easy to read. In particular, the book works out the complex interaction between the many different effects to optimize high-power single-mode performance at ultimate reliability and thus is of great benefit to every researcher and engineer engaged in this diode laser field. Another novelty and highlight is, for the first time ever in book form, a comprehensive yet concise discussion of diode laser reliability related issues. These are elaborated in four distinct chapters comprising laser degradation physics and modes, optical strength enhancement approaches including mirror passivation/coating and non-absorbing mirror technologies, followed by two highly relevant product-oriented chapters on reliability design engineering concepts and techniques and an elaborate reliability test plan for laser chip and module product qualification. This original and novel approach to link laser design to reliability aspects and requirements provides both, most useful insight into degradation processes such as catastrophic optical mirror damage on a microscopic scale, and a wide selection of effective remedial actions. These accounts, which are of highest significance for lasers operating at the optical stress limit due to extremely high output power densities and most demanding lifetime requirements are very professionally prepared and discussed in an interesting, coherent and skilful manner. The diagnostics part, consisting of three very elaborate chapters, is most unique and novel with respect to other diode laser books. It discusses for the first time ever on a very high level and in a competent way studies on material integrity, impurity trapping effects, mirror and cavity temperatures, surface- and interface quality, mirror facet disorder effects, mechanical stress and facet coating instability, and diverse laser temperature effects, dynamic laser degradation effects and mirror temperature maps. Of highest significance to design, performance and reliability are the various correlations established between laser device and material parameters. The most different and sophisticated experiments, carried out by the author at micrometer spatial resolutions and at temperatures as low as 2K, provide highly valuable insights into laser and material quality parameters, and reveal for the first time the origins of high power limitations on an atomic scale due to local heating effects and deep level defects. It is of great benefit, that the experimental techniques such as Raman spectroscopy, various luminescence techniques, thermoreflectance and deep-level transient spectroscopy, pioneered by the author for the specific experiments on lasers, are discussed with great expertise in depth and breadth, and the numerous paper articles published by the author are now represented in this book. The book has an elaborate table of contents and index, which are very useful, over 200 illustrative figures and tables, and extensive lists of references to all technical topics at the end of each of the nine chapters, which make it easy to follow from cover to cover or by jumping in at random areas of special interest. Moreover, experimental and theoretical concepts are always illustrated by practical examples and data. I can highly recommend this extremely relevant, well-structured and well-formulated book to all practising researchers in industrial and academic diode laser R&D environments and to post-graduate engineering students interested in the actual problems of designing, manufacturing, testing, characterising and qualifying diode lasers. Due to its completeness and novel approach to combine design, reliability and diagnostics in the same book, it can serve as an ideal reference book as well, and it deserves to be welcomed wordwide by the addressed audience. Dr. Chung-en Zah, Research Director, Semiconductor Technologies Research, S&T Division, Corning Incorporate, Corning NY, USA =========================================== “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Cordinatore Prof. Lorenzo Pavesi, UNIVERSITÀ DEGLI STUDI DI TRENTO, Dipartimento di Fisica / Laboratorio di Nanoscienze This book represents a well thought description of three fundamental aspects of laser technology: the functioning principles, the reliability and the diagnostics. From this point of view, and, as far as I know, this is a unique example of a book where all these aspects are merged together resulting in a well-balanced presentation. This helps the reader to move with ease between different concepts since they are presented in a coherent manner and with the same terminology, symbols and definitions. The book reads well. Despite the subtitle indicates that it is a practical approach, the book is also correct from a formal point of view and presents the necessary equations and derivations to understand both the physical mechanisms and the practicalities via a set of useful formulas. In addition, there is the more important aspect of many real-life examples of how a laser is actually manufactured and which the relevant parameters that determine its behaviour are. It impresses the amounts of information that are given in the book: this would be more typical of a thick handbook on semiconductor laser than of an agile book. Dr. Epperlein was able to identify the most important concepts and to present them in a clear though concise way. I am teaching a course on Optoelectronics and I'm going to advise students to refer to this book, because it has all the necessary concepts and derivations for a systematic understanding of semiconductor lasers with many worked-out examples, which will help the student to grasp the actual problems of designing, manufacturing, testing and using semiconductor lasers. All the various concepts are joined to very useful figures, which, if provided to instructors as files, can be a useful add-on for the use of the book as text for teaching. Concepts are always detailed with numbers to give a feeling of their practical use. In conclusion, I do find the book suitable for my teaching duties and will refer it to my students. Prof. Dr. Lorenzo Pavesi, Head of the Department of Physics, Head of the Nanoscience Laboratory, University of Trento, Italy 31 May 2013 =========================================== “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Robert W. Herrick, Ph.D., Senior Component Reliability Engineer, Intel Corp., Santa Clara, California, USA Dr. Epperlein has done the semiconductor laser community a great service, by releasing the most complete book on the market on the practical issues of how to make reliable semiconductor lasers. While dozens of books have been written over the past couple of decades on semiconductor laser design, only a handful have been written on semiconductor laser reliability. Prior to the release of this book, perhaps 40% of the material could be obtained elsewhere by combining five books: one on laser design, one on laser reliability, one on reliability calculations, and a couple of laser review books. Another 40% could be pieced together by collecting 50 -100 papers on the subjects of laser design, laser fabrication, characterization, and reliability. The remaining 20% have not previously been covered in any comprehensive way. Only the introductory material in the first half of the first chapter has good coverage elsewhere. The large majority of the knowledge in this book is generally held as “trade secret” by those with the expertise in the field, and most of those in the know are not free to discuss. The author was fortunate enough to work for the first half of his career in the IBM research labs, with access to unparalleled resources, and the ability to publish his work without trade secret restrictions. The results are still at the cutting edge of our understanding of semiconductor laser reliability today, and go well beyond the empirical “black box” approach many use of “try everything, and see what works.” The author did a fine job of pulling together material from many disparate fields. Dr. Epperlein has particular expertise in high power single mode semiconductor lasers, and those working on those type of lasers will be especially interested in this book, as there has never been a book published on the fabrication and qualification of such lasers before. But those in almost any field of semiconductor lasers will learn items of interest about device design, fabrication, reliability, and characterization. Unlike most other books, which intend to convey the scientific findings or past work of the author, this one is written more as a “how to” manual, which should make it more accessible and useful to development engineers and researchers in the field. It also has over 200 figures, which make it easier to follow. As with many books of this type, it is not necessary to read it from cover-to-cover; it is best skimmed, with deep diving into any areas of special interest to the reader. The book is remarkable also for how comprehensive it is – even experts will discover something new and useful. Dr. Epperlein’s book is an essential read for anyone looking to develop semiconductor lasers for anything other than pure research use, and I give it my highest recommendation. Robert W. Herrick, Ph.D., Senior Component Reliability Engineer, Intel Corp., Santa Clara, California, USA

Solid-State Lasers for Materials Processing

Author : Reinhard Iffländer
Publisher : Springer
Page : 357 pages
File Size : 43,5 Mb
Release : 2012-11-13
Category : Science
ISBN : 9783540465850

Get Book

Solid-State Lasers for Materials Processing by Reinhard Iffländer Pdf

From the reviews: "Takes the reader on a journey that covers all the basic science and engineering related to the topic of developing a solid-state laser for common materials processing problems. [...] Entrants to the field will certainly find it a book to keep for future reference." Optics & Photonic News

Solid-State Lasers and Applications

Author : Alphan Sennaroglu
Publisher : CRC Press
Page : 548 pages
File Size : 42,7 Mb
Release : 2017-12-19
Category : Technology & Engineering
ISBN : 9781420005295

Get Book

Solid-State Lasers and Applications by Alphan Sennaroglu Pdf

Because of the favorable characteristics of solid-state lasers, they have become the preferred candidates for a wide range of applications in science and technology, including spectroscopy, atmospheric monitoring, micromachining, and precision metrology. Presenting the most recent developments in the field, Solid-State Lasers and Applications focuses on the design and applications of solid-state laser systems. With contributions from leading international experts, the book explores the latest research results and applications of solid-state lasers as well as various laser systems. The beginning chapters discuss current developments and applications of new solid-state gain media in different wavelength regions, including cerium-doped lasers in the ultraviolet range, ytterbium lasers near 1μm, rare-earth ion-doped lasers in the eye-safe region, and tunable Cr2+:ZnSe lasers in the mid-infrared range. The remaining chapters study specific modes of operation of solid-state laser systems, such as pulsed microchip lasers, high-power neodymium lasers, ultrafast solid-state lasers, amplification of femtosecond pulses with optical parametric amplifiers, and noise characteristics of solid-state lasers. Solid-State Lasers and Applications covers the most important aspects of the field to provide current, comprehensive coverage of solid-state lasers.

Advances in High-Power Fiber and Diode Laser Engineering

Author : Ivan Divliansky
Publisher : Institution of Engineering and Technology
Page : 400 pages
File Size : 54,9 Mb
Release : 2019-12-30
Category : Technology & Engineering
ISBN : 9781785617515

Get Book

Advances in High-Power Fiber and Diode Laser Engineering by Ivan Divliansky Pdf

Advances in High-Power Fiber and Diode Laser Engineering provides an overview of recent research trends in fiber and diode lasers and laser systems engineering. In recent years, many new fiber designs and fiber laser system strategies have emerged, targeting the mitigation of different problems which occur when standard optical fibers are used for making high-power lasers. Simultaneously, a lot of attention has been put to increasing the brightness and the output power of laser diodes. Both of these major laser development directions continue to advance at a rapid pace with the sole purpose of achieving higher power while having excellent beam quality. The book begins by introducing the principles of diode lasers and methods for improving their brightness. Later chapters cover quantum cascade lasers, diode pumped high power lasers, high average power LMA fiber amplifiers, high-power fiber lasers, beam combinable kilowatt all-fiber amplifiers, and applications of 2 μm thulium fiber lasers and high-power GHz linewidth diode lasers. Written by a team of authors with experience in academia and industrial research and development, and brought together by an expert editor, this book will be of use to anyone interested in laser systems development at the laboratory or commercial scale.

Organic Solid-State Lasers

Author : Sébastien Forget,Sébastien Chénais
Publisher : Springer
Page : 179 pages
File Size : 53,8 Mb
Release : 2013-07-03
Category : Science
ISBN : 9783642367052

Get Book

Organic Solid-State Lasers by Sébastien Forget,Sébastien Chénais Pdf

Organic lasers are broadly tunable coherent sources, potentially compact, convenient and manufactured at low-costs. Appeared in the mid 60’s as solid-state alternatives for liquid dye lasers, they recently gained a new dimension after the demonstration of organic semiconductor lasers in the 90's. More recently, new perspectives appeared at the nanoscale, with organic polariton and surface plasmon lasers. After a brief reminder to laser physics, a first chapter exposes what makes organic solid-state organic lasers specific. The laser architectures used in organic lasers are then reviewed, with a state-of-the-art review of the performances of devices with regard to output power, threshold, lifetime, beam quality etc. A survey of the recent trends in the field is given, highlighting the latest developments with a special focus on the challenges remaining for achieving direct electrical pumping of organic semiconductor lasers. A last chapter covers the applications of organic solid-state lasers.

Solid-State Mid-Infrared Laser Sources

Author : Irina T. Sorokina,Konstantin L. Vodopyanov
Publisher : Springer Science & Business Media
Page : 600 pages
File Size : 53,6 Mb
Release : 2003-07-10
Category : Science
ISBN : 9783540006213

Get Book

Solid-State Mid-Infrared Laser Sources by Irina T. Sorokina,Konstantin L. Vodopyanov Pdf

The book describes the most advanced techniques for generating coherent light in the mid-infrared region of the spectrum. These techniques represent diverse areas of photonics and include heterojunction semiconductor lasers, quantum cascade lasers, tunable crystalline lasers, fiber lasers, Raman lasers, and optical parametric laser sources. Offering authoritative reviews by internationally recognized experts, the book provides a wealth of information on the essential principles and methods of the generation of coherent mid-infrared light and on some of its applications. The instructive nature of the book makes it an excellent text for physicists and practicing engineers who want to use mid-infrared laser sources in spectroscopy, medicine, remote sensing and other fields, and for researchers in various disciplines requiring a broad introduction to the subject.

Solid-State Random Lasers

Author : Mikhail Noginov
Publisher : Springer
Page : 254 pages
File Size : 49,7 Mb
Release : 2006-07-04
Category : Science
ISBN : 9780387251059

Get Book

Solid-State Random Lasers by Mikhail Noginov Pdf

Random lasers are the simplest sources of stimulated emission without cavity, with the feedback provided by scattering in a gain medium. First proposed in the late 1960s, random lasers have grown to a large research field. This book reviews the history and the state of the art of random lasers, provides an outline of the basic models describing their behavior, and describes the recent advances in the field. The major focus of the book is on solid-state random lasers. However, it also briefly describes random lasers based on liquid dyes with scatterers. The chapters of the book are almost independent of each other. So, the scientists or engineers interested in any particular aspect of random lasers can read directly the relevant section. Researchers entering the field of random lasers will find in the book an overview of the field of study. Scientists working in the field can use the book as a reference source.

Introduction to Laser Diode-pumped Solid State Lasers

Author : Richard Scheps
Publisher : SPIE-International Society for Optical Engineering
Page : 122 pages
File Size : 41,9 Mb
Release : 2002
Category : Technology & Engineering
ISBN : STANFORD:36105110414096

Get Book

Introduction to Laser Diode-pumped Solid State Lasers by Richard Scheps Pdf

This text covers a wide range of material, from the basics of laser resonators to advanced topics in laser diode pumping. The subject matter is presented in descriptive terms that are understandable by the technical professional who does not have a strong foundation in fundamental laser topics.

Crystal-Field Engineering of Solid-State Laser Materials

Author : Brian Henderson,Ralph H. Bartram
Publisher : Cambridge University Press
Page : 416 pages
File Size : 42,6 Mb
Release : 2005-08-22
Category : Science
ISBN : 0521018013

Get Book

Crystal-Field Engineering of Solid-State Laser Materials by Brian Henderson,Ralph H. Bartram Pdf

This book examines the underlying science and design of laser materials. It emphasizes the principles of crystal-field engineering and discusses the basic physical concepts that determine laser gain and nonlinear frequency conversion in optical crystals. Henderson and Bartram develop the predictive capabilities of crystal-field engineering to show how modification of the symmetry and composition of optical centers can improve laser performance. They also discuss applications of the principles of crystal-field engineering to a variety of optical crystals in relation to the performances of laser devices. This book will be of considerable interest to physical, chemical and material scientists and to engineers involved in the science and technology of solid state lasers.

Handbook of Solid-State Lasers

Author : Peter Cheo
Publisher : CRC Press
Page : 644 pages
File Size : 40,8 Mb
Release : 1988-11-29
Category : Technology & Engineering
ISBN : 082477857X

Get Book

Handbook of Solid-State Lasers by Peter Cheo Pdf

Provides information on both state-of-the-art technology and fundamental principles of fully developed solid-state lasers, emphasizing their operational characteristics and physical properties. Six contributions discuss theories and techniques of III-V semiconductor diode lasers, describe various ty

Introduction to Laser Science and Engineering

Author : Travis S. Taylor
Publisher : CRC Press
Page : 342 pages
File Size : 51,7 Mb
Release : 2019-08-01
Category : Technology & Engineering
ISBN : 9781351713740

Get Book

Introduction to Laser Science and Engineering by Travis S. Taylor Pdf

Introduction to Laser Science and Engineering provides a modern resource for a first course in lasers for both students and professionals. Starting from simple descriptions, this text builds upon them to give a detailed modern physical understanding of the concepts behind light, optical beams and lasers. The coverage starts with the nature of light and the principles of photon absorption and transmission, leading to the amplified and stimulated emission principals governing lasers. The specifics of lasers and their application, safe use and future prospects are then covered, with a wealth of illustrations to provide readers with a visual sense of optical and laser principles.