The Numerical Solution Of Ordinary And Partial Differential Equations

The Numerical Solution Of Ordinary And Partial Differential Equations Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of The Numerical Solution Of Ordinary And Partial Differential Equations book. This book definitely worth reading, it is an incredibly well-written.

The Numerical Solution of Ordinary and Partial Differential Equations

Author : Granville Sewell
Publisher : World Scientific
Page : 348 pages
File Size : 41,6 Mb
Release : 2014-12-16
Category : Mathematics
ISBN : 9789814635110

Get Book

The Numerical Solution of Ordinary and Partial Differential Equations by Granville Sewell Pdf

This book presents methods for the computational solution of differential equations, both ordinary and partial, time-dependent and steady-state. Finite difference methods are introduced and analyzed in the first four chapters, and finite element methods are studied in chapter five. A very general-purpose and widely-used finite element program, PDE2D, which implements many of the methods studied in the earlier chapters, is presented and documented in Appendix A. The book contains the relevant theory and error analysis for most of the methods studied, but also emphasizes the practical aspects involved in implementing the methods. Students using this book will actually see and write programs (FORTRAN or MATLAB) for solving ordinary and partial differential equations, using both finite differences and finite elements. In addition, they will be able to solve very difficult partial differential equations using the software PDE2D, presented in Appendix A. PDE2D solves very general steady-state, time-dependent and eigenvalue PDE systems, in 1D intervals, general 2D regions, and a wide range of simple 3D regions. Contents:Direct Solution of Linear SystemsInitial Value Ordinary Differential EquationsThe Initial Value Diffusion ProblemThe Initial Value Transport and Wave ProblemsBoundary Value ProblemsThe Finite Element MethodsAppendix A — Solving PDEs with PDE2DAppendix B — The Fourier Stability MethodAppendix C — MATLAB ProgramsAppendix D — Answers to Selected Exercises Readership: Undergraduate, graduate students and researchers. Key Features:The discussion of stability, absolute stability and stiffness in Chapter 1 is clearer than in other textsStudents will actually learn to write programs solving a range of simple PDEs using the finite element method in chapter 5In Appendix A, students will be able to solve quite difficult PDEs, using the author's software package, PDE2D. (a free version is available which solves small to moderate sized problems)Keywords:Differential Equations;Partial Differential Equations;Finite Element Method;Finite Difference Method;Computational Science;Numerical AnalysisReviews: "This book is very well written and it is relatively easy to read. The presentation is clear and straightforward but quite rigorous. This book is suitable for a course on the numerical solution of ODEs and PDEs problems, designed for senior level undergraduate or beginning level graduate students. The numerical techniques for solving problems presented in the book may also be useful for experienced researchers and practitioners both from universities or industry." Andrzej Icha Pomeranian Academy in Słupsk Poland

The Numerical Solution of Ordinary and Partial Differential Equations

Author : Granville Sewell
Publisher : John Wiley & Sons
Page : 350 pages
File Size : 40,9 Mb
Release : 2005-07-25
Category : Mathematics
ISBN : 9780471742005

Get Book

The Numerical Solution of Ordinary and Partial Differential Equations by Granville Sewell Pdf

Learn to write programs to solve ordinary and partial differential equations The Second Edition of this popular text provides an insightful introduction to the use of finite difference and finite element methods for the computational solution of ordinary and partial differential equations. Readers gain a thorough understanding of the theory underlying themethods presented in the text. The author emphasizes the practical steps involved in implementing the methods, culminating in readers learning how to write programs using FORTRAN90 and MATLAB(r) to solve ordinary and partial differential equations. The book begins with a review of direct methods for the solution of linear systems, with an emphasis on the special features of the linear systems that arise when differential equations are solved. The following four chapters introduce and analyze the more commonly used finite difference methods for solving a variety of problems, including ordinary and partial differential equations and initial value and boundary value problems. The techniques presented in these chapters, with the aid of carefully developed exercises and numerical examples, can be easilymastered by readers. The final chapter of the text presents the basic theory underlying the finite element method. Following the guidance offered in this chapter, readers gain a solid understanding of the method and discover how to use it to solve many problems. A special feature of the Second Edition is Appendix A, which describes a finite element program, PDE2D, developed by the author. Readers discover how PDE2D can be used to solve difficult partial differential equation problems, including nonlinear time-dependent and steady-state systems, and linear eigenvalue systems in 1D intervals, general 2D regions, and a wide range of simple 3D regions. The software itself is available to instructors who adopt the text to share with their students.

Numerical Solution of Ordinary and Partial Differential Equations

Author : L. Fox
Publisher : Elsevier
Page : 520 pages
File Size : 51,7 Mb
Release : 2014-05-15
Category : Mathematics
ISBN : 9781483149479

Get Book

Numerical Solution of Ordinary and Partial Differential Equations by L. Fox Pdf

Numerical Solution of Ordinary and Partial Differential Equations is based on a summer school held in Oxford in August-September 1961. The book is organized into four parts. The first three cover the numerical solution of ordinary differential equations, integral equations, and partial differential equations of quasi-linear form. Most of the techniques are evaluated from the standpoints of accuracy, convergence, and stability (in the various senses of these terms) as well as ease of coding and convenience of machine computation. The last part, on practical problems, uses and develops the techniques for the treatment of problems of the greatest difficulty and complexity, which tax not only the best machines but also the best brains. This book was written for scientists who have problems to solve, and who want to know what methods exist, why and in what circumstances some are better than others, and how to adapt and develop techniques for new problems. The budding numerical analyst should also benefit from this book, and should find some topics for valuable research. The first three parts, in fact, could be used not only by practical men but also by students, though a preliminary elementary course would assist the reading.

Finite Difference Methods for Ordinary and Partial Differential Equations

Author : Randall J. LeVeque
Publisher : SIAM
Page : 356 pages
File Size : 53,7 Mb
Release : 2007-01-01
Category : Mathematics
ISBN : 0898717833

Get Book

Finite Difference Methods for Ordinary and Partial Differential Equations by Randall J. LeVeque Pdf

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Numerical Solution of Ordinary Differential Equations

Author : Kendall Atkinson,Weimin Han,David E. Stewart
Publisher : John Wiley & Sons
Page : 272 pages
File Size : 49,5 Mb
Release : 2011-10-24
Category : Mathematics
ISBN : 9781118164525

Get Book

Numerical Solution of Ordinary Differential Equations by Kendall Atkinson,Weimin Han,David E. Stewart Pdf

A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.

Analytic Methods for Partial Differential Equations

Author : G. Evans,J. Blackledge,P. Yardley
Publisher : Springer Science & Business Media
Page : 308 pages
File Size : 40,5 Mb
Release : 2012-12-06
Category : Mathematics
ISBN : 9781447103790

Get Book

Analytic Methods for Partial Differential Equations by G. Evans,J. Blackledge,P. Yardley Pdf

This is the practical introduction to the analytical approach taken in Volume 2. Based upon courses in partial differential equations over the last two decades, the text covers the classic canonical equations, with the method of separation of variables introduced at an early stage. The characteristic method for first order equations acts as an introduction to the classification of second order quasi-linear problems by characteristics. Attention then moves to different co-ordinate systems, primarily those with cylindrical or spherical symmetry. Hence a discussion of special functions arises quite naturally, and in each case the major properties are derived. The next section deals with the use of integral transforms and extensive methods for inverting them, and concludes with links to the use of Fourier series.

Numerical Solution of Ordinary Differential Equations

Author : L.F. Shampine
Publisher : Routledge
Page : 632 pages
File Size : 43,7 Mb
Release : 2018-10-24
Category : Mathematics
ISBN : 9781351427555

Get Book

Numerical Solution of Ordinary Differential Equations by L.F. Shampine Pdf

This new work is an introduction to the numerical solution of the initial value problem for a system of ordinary differential equations. The first three chapters are general in nature, and chapters 4 through 8 derive the basic numerical methods, prove their convergence, study their stability and consider how to implement them effectively. The book focuses on the most important methods in practice and develops them fully, uses examples throughout, and emphasizes practical problem-solving methods.

Numerical Solution of Ordinary Differential Equations

Author : Nik Pachis
Publisher : Unknown
Page : 280 pages
File Size : 49,5 Mb
Release : 2016-04-01
Category : Electronic
ISBN : 1681174480

Get Book

Numerical Solution of Ordinary Differential Equations by Nik Pachis Pdf

Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term is sometimes taken to mean the computation of integrals. An ordinary differential equation or ODE is a differential equation containing one or more functions of one independent variable and its derivatives. The term "ordinary" is used in contrast with the term partial differential equation which may be with respect to more than one independent variable. Ordinary differential equations are ubiquitous in science and engineering: in geometry and mechanics from the first examples onwards (Newton, Leibniz, Euler, Lagrange), in chemical reaction kinetics, molecular dynamics, electronic circuits, population dynamics, and many more application areas. They also arise, after semi discretization in space, in the numerical treatment of time-dependent partial differential equations, which are even more impressively omnipresent in our technologically developed and financially controlled world. The book Numerical Solution of Ordinary Differential Equations offers a complete and easy-to-follow introduction to classical topics in the numerical solution of ordinary differential equations. The book's approach not only explains the presented mathematics, but also helps readers understand how these numerical methods are used to solve real-world problems.

Numerical Solution of Partial Differential Equations

Author : Gordon D. Smith
Publisher : Oxford University Press
Page : 356 pages
File Size : 51,7 Mb
Release : 1985
Category : Computers
ISBN : 0198596502

Get Book

Numerical Solution of Partial Differential Equations by Gordon D. Smith Pdf

Substantially revised, this authoritative study covers the standard finite difference methods of parabolic, hyperbolic, and elliptic equations, and includes the concomitant theoretical work on consistency, stability, and convergence. The new edition includes revised and greatly expanded sections on stability based on the Lax-Richtmeyer definition, the application of Pade approximants to systems of ordinary differential equations for parabolic and hyperbolic equations, and a considerably improved presentation of iterative methods. A fast-paced introduction to numerical methods, this will be a useful volume for students of mathematics and engineering, and for postgraduates and professionals who need a clear, concise grounding in this discipline.

Time-dependent Partial Differential Equations and Their Numerical Solution

Author : Heinz-Otto Kreiss,Hedwig Ulmer Busenhart
Publisher : Birkhäuser
Page : 82 pages
File Size : 50,9 Mb
Release : 2012-12-06
Category : Mathematics
ISBN : 9783034882293

Get Book

Time-dependent Partial Differential Equations and Their Numerical Solution by Heinz-Otto Kreiss,Hedwig Ulmer Busenhart Pdf

This book studies time-dependent partial differential equations and their numerical solution, developing the analytic and the numerical theory in parallel, and placing special emphasis on the discretization of boundary conditions. The theoretical results are then applied to Newtonian and non-Newtonian flows, two-phase flows and geophysical problems. This book will be a useful introduction to the field for applied mathematicians and graduate students.

Time-dependent Partial Differential Equations and Their Numerical Solution

Author : Heinz-Otto Kreiss,Hedwig Ulmer Busenhart
Publisher : Springer Science & Business Media
Page : 100 pages
File Size : 50,5 Mb
Release : 2001-04-01
Category : Mathematics
ISBN : 3764361255

Get Book

Time-dependent Partial Differential Equations and Their Numerical Solution by Heinz-Otto Kreiss,Hedwig Ulmer Busenhart Pdf

This book studies time-dependent partial differential equations and their numerical solution, developing the analytic and the numerical theory in parallel, and placing special emphasis on the discretization of boundary conditions. The theoretical results are then applied to Newtonian and non-Newtonian flows, two-phase flows and geophysical problems. This book will be a useful introduction to the field for applied mathematicians and graduate students.

A First Course in the Numerical Analysis of Differential Equations

Author : A. Iserles
Publisher : Cambridge University Press
Page : 402 pages
File Size : 47,5 Mb
Release : 1996-01-18
Category : Mathematics
ISBN : 0521556554

Get Book

A First Course in the Numerical Analysis of Differential Equations by A. Iserles Pdf

Numerical analysis presents different faces to the world. For mathematicians it is a bona fide mathematical theory with an applicable flavour. For scientists and engineers it is a practical, applied subject, part of the standard repertoire of modelling techniques. For computer scientists it is a theory on the interplay of computer architecture and algorithms for real-number calculations. The tension between these standpoints is the driving force of this book, which presents a rigorous account of the fundamentals of numerical analysis of both ordinary and partial differential equations. The point of departure is mathematical but the exposition strives to maintain a balance between theoretical, algorithmic and applied aspects of the subject. In detail, topics covered include numerical solution of ordinary differential equations by multistep and Runge-Kutta methods; finite difference and finite elements techniques for the Poisson equation; a variety of algorithms to solve large, sparse algebraic systems; methods for parabolic and hyperbolic differential equations and techniques of their analysis. The book is accompanied by an appendix that presents brief back-up in a number of mathematical topics. Dr Iserles concentrates on fundamentals: deriving methods from first principles, analysing them with a variety of mathematical techniques and occasionally discussing questions of implementation and applications. By doing so, he is able to lead the reader to theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations.

Numerical Methods for Partial Differential Equations

Author : Vitoriano Ruas
Publisher : John Wiley & Sons
Page : 376 pages
File Size : 40,5 Mb
Release : 2016-04-28
Category : Technology & Engineering
ISBN : 9781119111368

Get Book

Numerical Methods for Partial Differential Equations by Vitoriano Ruas Pdf

Numerical Methods for Partial Differential Equations: An Introduction Vitoriano Ruas, Sorbonne Universités, UPMC - Université Paris 6, France A comprehensive overview of techniques for the computational solution of PDE's Numerical Methods for Partial Differential Equations: An Introduction covers the three most popular methods for solving partial differential equations: the finite difference method, the finite element method and the finite volume method. The book combines clear descriptions of the three methods, their reliability, and practical implementation aspects. Justifications for why numerical methods for the main classes of PDE's work or not, or how well they work, are supplied and exemplified. Aimed primarily at students of Engineering, Mathematics, Computer Science, Physics and Chemistry among others this book offers a substantial insight into the principles numerical methods in this class of problems are based upon. The book can also be used as a reference for research work on numerical methods for PDE’s. Key features: A balanced emphasis is given to both practical considerations and a rigorous mathematical treatment The reliability analyses for the three methods are carried out in a unified framework and in a structured and visible manner, for the basic types of PDE's Special attention is given to low order methods, as practitioner's overwhelming default options for everyday use New techniques are employed to derive known results, thereby simplifying their proof Supplementary material is available from a companion website.