Code Type Models For Concrete Behaviour

Code Type Models For Concrete Behaviour Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Code Type Models For Concrete Behaviour book. This book definitely worth reading, it is an incredibly well-written.

Code-type models for concrete behaviour

Author : fib Fédération internationale du béton
Publisher : fib Fédération internationale du béton
Page : 202 pages
File Size : 54,8 Mb
Release : 2013-11-01
Category : Technology & Engineering
ISBN : 9782883941106

Get Book

Code-type models for concrete behaviour by fib Fédération internationale du béton Pdf

fib Model Code 2010 represents the state-of-the-art of code-type models for structural behaviour of concrete. It comprises constitutive relations and material models together with the most important explanatory notes. However the underlying normative work, i.e. the fundamental data as well as the considerations and discussions behind the formulas could not be given within the Model Code text. Based on various experiences gained after the publication of Model Code 1990 this lacking background information will lead in the following to numerous questions arising from Model Code users. Consequently the present bulletin claims to conquer this general weakness of codes in a way to guard against any future misunderstandings of the Model Code 2010 related to its chapter 5.1 (Concrete). It discusses the given formulas in connection with experimental data and the most important international literature. The constitutive relations or material models, being included in MC1990 and forming the basis and point of origin of the Task Group’s work, were critically evaluated, if necessary and possible adjusted, or replaced by completely new approaches. Major criteria have been the physical and thermodynamical soundness as well as practical considerations like simplicity and operationality. This state-of-the-art report is intended for practicizing engineers as well as for researchers and represents a comprehensible summary of the relevant knowledge available to the members of the fib Task Group 8.7 at the time of its drafting. Besides the fact that the bulletin is a background document for Chapter 5.1 of MC2010, it will provide an important foundation for the development of future generations of code-type models related to the characteristics and the behaviour of structural concrete. Further it will offer insights into the complexity of the normative work related to concrete modelling, leading to a better understanding and adequate appreciation of MC2010.

fib Model Code for Concrete Structures 2010

Author : fib - federation internationale du beton
Publisher : John Wiley & Sons
Page : 434 pages
File Size : 48,7 Mb
Release : 2013-12-04
Category : Technology & Engineering
ISBN : 9783433030615

Get Book

fib Model Code for Concrete Structures 2010 by fib - federation internationale du beton Pdf

The International Federation for Structural Concrete (fib) is a pre-normative organization. 'Pre-normative' implies pioneering work in codification. This work has now been realized with the fib Model Code 2010. The objectives of the fib Model Code 2010 are to serve as a basis for future codes for concrete structures, and present new developments with regard to concrete structures, structural materials and new ideas in order to achieve optimum behaviour. The fib Model Code 2010 is now the most comprehensive code on concrete structures, including their complete life cycle: conceptual design, dimensioning, construction, conservation and dismantlement. It is expected to become an important document for both national and international code committees, practitioners and researchers. The fib Model Code 2010 was produced during the last ten years through an exceptional effort by Joost Walraven (Convener; Delft University of Technology, The Netherlands), Agnieszka Bigaj-van Vliet (Technical Secretary; TNO Built Environment and Geosciences, The Netherlands) as well as experts out of 44 countries from five continents.

Model Code 2010 - Final draft

Author : fib Fédération internationale du béton
Publisher : fib Fédération internationale du béton
Page : 357 pages
File Size : 50,7 Mb
Release : 2012-01-01
Category : Technology & Engineering
ISBN : 9782883941052

Get Book

Model Code 2010 - Final draft by fib Fédération internationale du béton Pdf

The objectives of MC2010 are to (a) serve as a basis for future codes for concrete structures, and (b) present new developments with regard to concrete structures, structural materials and new ideas in order to achieve optimum behaviour. MC2010 includes the whole life cycle of a concrete structure, from design and construction to conservation (assessment, maintenance, strengthening) and dismantlement, in one code for buildings, bridges and other civil engineering structures. Design is largely based on performance requirements. The chapter on materials is extended with new types of concrete and reinforcement (such as fibres and non-metallic reinforcements). The fib Model Code 2010 also gives corresponding explanations in a separate column of the document. Additionally, MC2010 is supported by background documents that have already been (or will soon be) published in fib bulletins and journal articles. MC2010 is now the most comprehensive code on concrete structures, including their complete life cycle: conceptual design, dimensioning, construction, conservation and dismantlement.

High Tech Concrete: Where Technology and Engineering Meet

Author : D.A. Hordijk,M. Luković
Publisher : Springer
Page : 2859 pages
File Size : 44,7 Mb
Release : 2017-06-08
Category : Technology & Engineering
ISBN : 9783319594712

Get Book

High Tech Concrete: Where Technology and Engineering Meet by D.A. Hordijk,M. Luković Pdf

This book contains the proceedings of the fib Symposium “High Tech Concrete: Where Technology and Engineering Meet”, that was held in Maastricht, The Netherlands, in June 2017. This annual symposium was organised by the Dutch Concrete Association and the Belgian Concrete Association. Topics addressed include: materials technology, modelling, testing and design, special loadings, safety, reliability and codes, existing concrete structures, durability and life time, sustainability, innovative building concepts, challenging projects and historic concrete, amongst others. The fib (International Federation for Structural Concrete) is a not-for-profit association committed to advancing the technical, economic, aesthetic and environmental performance of concrete structures worldwide.

Thermal Cracking of Massive Concrete Structures

Author : Eduardo M.R. Fairbairn,Miguel Azenha
Publisher : Springer
Page : 409 pages
File Size : 40,9 Mb
Release : 2018-05-23
Category : Technology & Engineering
ISBN : 9783319766171

Get Book

Thermal Cracking of Massive Concrete Structures by Eduardo M.R. Fairbairn,Miguel Azenha Pdf

This book provides a State of the Art Report (STAR) produced by RILEM Technical Committee 254-CMS ‘Thermal Cracking of Mas-sive Concrete Structures’. Several recent developments related to the old problem of understanding/predicting stresses originated from the evolution of the hydration of concrete are at the origin of the creation this technical committee. Having identified a lack in the organization of up-to-date scientific and technological knowledge about cracking induced by hydration heat effects, this STAR aims to provide both practitioners and scientists with a deep integrated overview of consolidated knowledge, together with recent developments on this subject.

2022 fib Awards for Outstanding Concrete Structures

Author : FIB – International Federation for Structural Concrete
Publisher : FIB - International Federation for Structural Concrete
Page : 48 pages
File Size : 47,9 Mb
Release : 2022-06-15
Category : Technology & Engineering
ISBN : 9782883941595

Get Book

2022 fib Awards for Outstanding Concrete Structures by FIB – International Federation for Structural Concrete Pdf

The fib has two major missions now. One is to work toward the publication of the Model Code 2020, and the other is to respond to the global movement toward carbon neutrality. While the former is steadily progressing toward completion, the latter will require significant efforts for generations to come. As we all know, cement, the primary material for concrete, is a sector that accounts for 8.5% of the world’s CO2 emissions. And the structural concrete that fib handles consume 60% of that. In other words, we need to know the reality that our structural concrete is emitting 5% of the world’s CO2. From now on, fib members, suppliers, designers, builders, owner’s engineers, and academic researchers will be asked how to solve this difficult problem. In general, most of the CO2 emissions in the life cycle of structural concrete come from the production stage of materials and the use stage after construction, i.e. A1 to A3 and B1 to B5 processes as defined in EN15978. Cement and steel sectors, which are the main materials for structural concrete, are expected to take various measures to achieve zero carbon in their respective sectors by 2050. Until then, we must deal with the transition with our low carbon technologies. Regarding the production stage, the fib has recently launched TG4.8 “Low carbon concrete”. And the latest low carbon technologies will be discussed there. On the other hand, in the use stage, there is very little data on the relationship between durability and intervention and maintenance so far. The data accumulation here is the work of the fib, a group of various experts on structural concrete. Through-life management using highly durable structures and precise monitoring will enable to realize minimum maintenance in the use stage and to minimize CO2 emissions. Furthermore, it is also possible to contribute to the reduction of CO2 emissions in the further stage after the first cycle by responding to the circular economy, that is, deconstruction (C), reuse, and recycle (D). However, the technology in this field is still in its infancy, and further research and development is expected in the future. As described above, structural concrete can be carbon neutral in all aspects of its conception, and it can make a significant contribution when it is realized. The fib will have to address these issues in the future. Of course, it will not be easy, and it will take time. However, if we do not continue our efforts as the only international academic society on structural concrete in the world to achieve carbon neutrality, the significance of our very existence may be questioned. Long before Portland cement was invented, Roman concrete, made of volcanic ash and other materials, was the ultimate low-carbon material, and is still in use 2’000 years later because of its non-reinforced structure and lack of deterioration factors. Reinforced concrete, which made it possible to apply concrete to structures other than arches and domes, is only 150 years old. Prestressed concrete is even younger, with only 80 years of history. Now that we think about it, we realize that Roman concrete, which is non-reinforced low carbon concrete, is one of the examples of problem solving that we are trying to achieve. We have new materials, such as coated reinforcement, FRP, and fiber reinforced concrete, which can be used in any structural form. To overcome this challenge with all our wisdom would be to live up to the feat the Romans accomplished 2’000 years ago. Realizing highly durable and elegant structures with low-carbon concrete is the key to meet the demands of the world in the future. I hope you will enjoy reading this AOS brochure showing the Outstanding Concrete Structures Awards at the fib 2022 Congress in Oslo. And I also hope you will find some clues for the challenges we are facing.

2018 fib Awards for Outstanding Concrete Structures

Author : FIB – International Federation for Structural Concrete
Publisher : FIB - International Federation for Structural Concrete
Page : 44 pages
File Size : 46,6 Mb
Release : 2018-10-08
Category : Technology & Engineering
ISBN : 9782883941274

Get Book

2018 fib Awards for Outstanding Concrete Structures by FIB – International Federation for Structural Concrete Pdf

The fib Awards for Outstanding Concrete Structures are attributed every four years at the fib Congress, with the goal of enhancing the international recognition of concrete structures that demonstrate the versatility of concrete as a structural medium. The award consists of a bronze plaque to be displayed on the structure, and certificates presented to the main parties responsible for the work. Applications are invited by the fib secretariat via the National Member Groups. Information on the competition is also made available on the fib’s website, and in the newsletter fib-news published in Structural Concrete. The submitted structures must have been completed during the four years prior to the year of the Congress at which the awards are attributed. The jury may accept an older structure, completed one or two years before, provided that it was not already submitted for the previous award attribution (Mumbai, 2014). The submitted structures must also have the support of an fib Head of Delegation or National Member Group Secretary in order to confirm the authenticity of the indicated authors. Entries consist of the completed entry form, three to five representative photos of the whole structure and/or any important details or plans, and short summary texts explaining: - the history of the project; - description of the structure; - particularities of its realisation (difficulties encountered, special solutions found, etc.). A jury designated by the Presidium selects the winners. The awards are attributed in two categories, Civil Engineering Structures (including bridges) and Buildings. Two or three ‘Winners’ and two to four ‘Special Mention’ recipients are selected in each category, depending on the number of entries received. The jury takes into account criteria such as: - design aspects, including aesthetics and design detailing; - construction practice and quality of work; - environmental aspects of the design and its construction; - durability and sustainability aspects; - significance of the contribution made by the entry to the development and improvement of concrete construction. The decisions of the jury are definitive and cannot be challenged. They are unveiled at a special ceremony during the fib Congress in Melbourne.

Understanding the Tensile Properties of Concrete

Author : Jaap Weerheijm
Publisher : Elsevier
Page : 452 pages
File Size : 47,9 Mb
Release : 2024-03-01
Category : Technology & Engineering
ISBN : 9780443155949

Get Book

Understanding the Tensile Properties of Concrete by Jaap Weerheijm Pdf

The response of concrete under tensile loading is crucial for most applications because concrete is much weaker in tension than in compression. Understanding the response mechanisms of concrete under tensile conditions is therefore key to understanding and using concrete in structural applications. Understanding the Tensile Properties of Concrete Second Edition summarises key recent research in this important subject area. After an introduction to concrete, the book is divided into two parts: part one on static response and part two on dynamic response. Part one starts with a summary chapter on the most important parameters that affect the tensile response of concrete. Chapters show how multi scale modelling is used to relate concrete composition to tensile properties. Part two focuses on dynamic response and starts with an introduction to the different regimes of dynamic loading, ranging from the low frequency loading by wind or earthquakes up to the extreme dynamic conditions due to explosions and ballistic impacts. Following chapters review dynamic testing techniques and devices that deal with the various regimes of dynamic loading. Later chapters highlight the dynamic behaviour of concrete from different viewpoints, and the book ends with a chapter on practical examples of how detailed knowledge on tensile properties is used by engineers in structural applications. Drawing on the work of some of the leading experts in the field, the book is fully updated and will be a valuable reference for civil and structural engineers as well as those researching this important material. Presents recent research in the areas of understanding the response mechanisms of concrete under tensile conditions Provides a summary of the most important parameters that affect the tensile response of concrete and shows how multi scale modeling is used to relate concrete composition to tensile properties Highlights the dynamic behavior of concrete from different viewpoints and provides practical examples of how detailed knowledge on tensile properties is used by engineers in structural applications Presents recent advancements in tensile strength determination under static and dynamic loading conditions for concrete structures Covers HSFRC and FRHSC Presents new work on non-local models and damage modeling, the dynamic increase factor for tensile strength, fracture energy and anchors, and slop stabilization

High Performance and Optimum Design of Structures and Materials III

Author : W. P. De Wilde,S. Hernandez,S. Kravanja
Publisher : WIT Press
Page : 257 pages
File Size : 40,5 Mb
Release : 2018-12-03
Category : Technology & Engineering
ISBN : 9781784662899

Get Book

High Performance and Optimum Design of Structures and Materials III by W. P. De Wilde,S. Hernandez,S. Kravanja Pdf

Papers presented at the 2018 International Conference on High Performance and Optimum Design of Structures and Materials are contained in this volume. These papers address issues involving advanced types of structures, particularly those based on new concepts or new materials and their system design. The use of novel materials and new structural concepts nowadays is not restricted to highly technical areas like aerospace, aeronautical applications or the automotive industry, but affects all engineering fields including those such as civil engineering and architecture. Most high performance structures require the development of a generation of new materials, which can more easily resist a range of external stimuli or react in a non-conventional manner. Particular emphasis is placed on intelligent structures and materials as well as the application of computational methods for their modelling, control and management. Optimisation problems discussed in this book involve those related to size, shape and topology of structures and materials. Optimisation techniques have much to offer to those involved in the design of new industrial products. The development of new algorithms and the appearance of powerful commercial computer codes with easy to use graphical interfaces has created a fertile field for the incorporation of optimisation in the design process in all engineering disciplines. The latest developments in design, optimisation, manufacturing and experimentation are highlighted in this book.

Structural Concrete

Author : Anonim
Publisher : Unknown
Page : 0 pages
File Size : 45,5 Mb
Release : 2009
Category : Concrete
ISBN : 2883940932

Get Book

Structural Concrete by Anonim Pdf

Acceptance of cable systems using prestressing steels

Author : FIB – International Federation for Structural Concrete
Publisher : FIB - Féd. Int. du Béton
Page : 126 pages
File Size : 40,9 Mb
Release : 2019-03-01
Category : Technology & Engineering
ISBN : 9782883941298

Get Book

Acceptance of cable systems using prestressing steels by FIB – International Federation for Structural Concrete Pdf

Cable-stayed structures have become increasingly popular over the last 30 years and have been used in all parts of the world. Modern cable-stayed bridges have a history of over 50-years and have been constructed with span lengths ranging from 15 m to over 1000 m. Many long span cable-stayed bridges have been built for railway and highway traffic applications. Stay cables have also been used on pedestrian structures, many of which are architecturally striking and have become landmark structures. There is growing use in building structures, particularly for cable-supported roofs. Most of the cable supported structures have been in the form of cable-stayed bridges; but in recent years, extradosed bridges have seen increased popularity among the designers. Led by the experience in Japan, more than 200 extradosed bridges have been constructed worldwide in the past 15 years. The first edition of these fib recommendations was published as fib Bulletin 30 in 2005 and was the first specification published by fib for stay cable systems. This new bulletin has been updated based on Bulletin 30 with the aim to reflect the current state of the art and encompass the latest knowledge in cable systems. In addition, it has been the aspiration of Commission 5 and Task Group 5.5 to harmonize the guidance in this updated bulletin with other stay cable recommendations from around the world, including those from Europe, Japan and the USA. This new bulletin is intended to supersede and replace fib Bulletin 30. It is recommended that it be used in lieu of fib Bulletin 30 for all future cable supported applications. The updated bulletin introduces several significant enhancements to the specifications: These recommendations are applicable to both stay cable and extradosed cable applications. In the past, there has been some debate over the boundary between cable-stayed and extradosed bridges. This bulletin presents a new continuous approach valid for both. A completely new testing requirement to assess the performance of cable systems under bending fatigue, including both anchorages and saddles, if applicable, has been added. Testing requirements for saddle systems have been reformulated. In addition to the bending fatigue test noted above, new testing procedures for stay cable saddles with isolated tensile elements are introduced. This includes tests for saddle axial fatigue, friction and tensile testing, and determination of the effective saddle friction coefficient. Expanded system qualification, including requirements for both stay cable and extradosed applications. Includes new provisions for MTE qualification and additional load transferring connection devices. Minimum number of tests is specified for each. A new in-situ damping measurement test has been added to verify the actual damping ratio of the damping devices installed. By testing on site, selected cables may be excited to vibrate without and with the damping devices so that the observed v vibration behaviour can be compared to the specified value. Other revisions have been made to reflect the current state of practice: Expanded quality control testing requirements Inclusion of epoxy-coated prestressing steel as a protection layer. Previous recommendations only considered zinc coatings. Specifications for epoxy coating material are given. Requirements for stainless steel components such as pipes, caps and plates Updated guidance for designing lightning protection systems Detailed recommendations for different levels of inspection of cable systems, including: initial, routine, detailed and exceptional inspections An updated list of references, relevant standards, and extended literature

Towards a rational understanding of shear in beams and slabs

Author : fib Fédération internationale du béton
Publisher : FIB - Féd. Int. du Béton
Page : 354 pages
File Size : 55,9 Mb
Release : 2018-05-01
Category : Technology & Engineering
ISBN : 9782883941250

Get Book

Towards a rational understanding of shear in beams and slabs by fib Fédération internationale du béton Pdf

Reliable performance of beams and slabs in shear is essential for the safety and also for the serviceability of reinforced concrete structures. A possible failure in shear is usually a brittle failure, which underlines the importance of the correct specification of the load carrying capacity in shear. The knowledge of performance in shear is steadily developing and it is now obvious that older structures were not always designed in accordance with contemporary requirements. The increasing load – mainly on bridges – requires the assessment of existing structures, often followed by their strengthening. An appropriate understanding of actual performance of concrete structures in shear is therefore of primary interest. The workshop which was held in Zürich in 2016 brought together a significant number of outstanding specialists working in the field of shear design, who had a chance to exchange their opinions and proposals for improving the current knowledge of shear behaviour in beams and slabs. The specialists came from different parts of the world, which made the workshop general and representative. The workshop was organised by fib Working Party 2.2.1 “Shear in Beams” (convened by O. Bayrak), which is a part of fib Commission 2 "Analysis and Design". Individual contributions mainly address shear in beams with low transversal reinforcement. It is crucial because many existing structures lack such reinforcement. Different theories, e.g. Critical Shear Crack Theory (CSCT), Modified Compression Field Theory (MCFT), Multi-Action Shear Model (MASM), etc. were presented and compared with procedures used in selected national codes or in the fib Model Code 2010. The models for shear design were often based to a great extent on empirical experience. The refined presented models tend to take into account the physical mechanisms in structures more effectively. A brittle behaviour in shear requires not only to check the equilibrium and failure load, but also to follow the progress of failure, including the crack development and propagation, stress redistribution, etc. The significance of the size effect – which causes the nominal strength of a large structure to be smaller than that of a small structure – was pointed out. Nowadays, the fibre reinforcement is used more than before since it allows significant labour costs savings in the construction industry. The contribution of fibres is suitable for shear transfer. It is very convenient that not only ordinary fibre reinforced elements were addressed but also the UHPFRC beams. The production of this new material is indeed growing, while the development of design recommendations has not been sufficiently fast. Fatigue resistance of structures with low shear reinforcement is also an important issue, which was also addressed in this bulletin. It cannot be neglected in prestressed bridges, which are exposed to dynamic loads. A comprehensive understanding of the shear behaviour is necessary. Although many laboratory experiments are carried out, they are suitable only to a limited extent. New testing methods are being developed and show promising results, e.g. digital image correlation. An actual structure performance should rather be tested on a large scale, ideally on real structures under realistic loading conditions.ii The papers presented in the bulletin are a basis for the discussion in view of the development of updated design rules for the new fib Model Code (MC2020), which is currently under preparation. fib Bulletins like this one, dealing with shear, help to transfer knowledge from research to design practice. The authors are convinced that it will lead to better new structures design of as well as to savings and to a safety increase in older existing structures, whose future is often decided now.

Polymer-duct systems for internal bonded post-tensioning

Author : fib Fédération internationale du béton
Publisher : fib Fédération internationale du béton
Page : 183 pages
File Size : 54,7 Mb
Release : 2014-12-01
Category : Technology & Engineering
ISBN : 9782883941151

Get Book

Polymer-duct systems for internal bonded post-tensioning by fib Fédération internationale du béton Pdf

The purpose of this recommendation - fib Bulletin 75: Polymer-duct systems for internal bonded post-tensioning - is to update and amend fib Bulletin 7:Corrugated plastic ducts for internal bonded post-tensioning, a technical report published in 2000. fib Bulletin 75 is meant as a cornerstone for the technical approval of polymer (plastic) ducts for internal bonded post-tensioning and possibly for the test procedures of a future testing standard. The updated bulletin includes new information on the design and detailing of concrete structures containing tendons with polymer ducts. The recommendation provides detailed test specifications for polymer materials, duct components and duct systems. In addition, the report contains recommendations for approval testing and attestations of conformity for polymer-duct systems. Although the new generation of corrugated polymer ducts for bonded post-tensioning have now been around for approximately twenty years, products still differ in material properties, geometrical detail, installation procedures and on-site use. Unlike corrugated steel ducts or smooth polyethylene (PE) pipes, they have not yet become standardized. It is the opinion of fib Task Group 9.16 and Commission 9 that these plastic ducts should, therefore, still be subjected to a systems approval process. This recommendation offers information acquired from twenty years of experience as well as new specifications that will, hopefully, lead to the standardization of polymer-duct systems.

11th PhD Symposium in Tokyo Japan

Author : FIB – International Federation for Structural Concrete
Publisher : FIB - Féd. Int. du Béton
Page : 920 pages
File Size : 53,9 Mb
Release : 2016-08-01
Category : Technology & Engineering
ISBN : 9784990914806

Get Book

11th PhD Symposium in Tokyo Japan by FIB – International Federation for Structural Concrete Pdf

Structural Concrete Textbook, Volume 4

Author : fib Fédération internationale du béton
Publisher : fib Fédération internationale du béton
Page : 203 pages
File Size : 48,7 Mb
Release : 2010-06-01
Category : Technology & Engineering
ISBN : 9782883940949

Get Book

Structural Concrete Textbook, Volume 4 by fib Fédération internationale du béton Pdf

The second edition of the Structural Concrete Textbook is an extensive revision that reflects advances in knowledge and technology over the past decade. It was prepared in the intermediate period from the CEP-FIP Model Code 1990 (MC90) to fib Model Code for Concrete Structures 2010 (MC2010), and as such incorporates a significant amount of information that has been already finalized for MC2010, while keeping some material from MC90 that was not yet modified considerably. The objective of the textbook is to give detailed information on a wide range of concrete engineering from selection of appropriate structural system and also materials, through design and execution and finally behaviour in use. The revised fib Structural Concrete Textbook covers the following main topics: phases of design process, conceptual design, short and long term properties of conventional concrete (including creep, shrinkage, fatigue and temperature influences), special types of concretes (such as self compacting concrete, architectural concrete, fibre reinforced concrete, high and ultra high performance concrete), properties of reinforcing and prestressing materials, bond, tension stiffening, moment-curvature, confining effect, dowel action, aggregate interlock; structural analysis (with or without time dependent effects), definition of limit states, control of cracking and deformations, design for moment, shear or torsion, buckling, fatigue, anchorages, splices, detailing; design for durability (including service life design aspects, deterioration mechanisms, modelling of deterioration mechanisms, environmental influences, influences of design and execution on durability); fire design (including changes in material and structural properties, spalling, degree of deterioration), member design (linear members and slabs with reinforcement layout, deep beams); management, assessment, maintenance, repair (including, conservation strategies, risk management, types of interventions) as well as aspects of execution (quality assurance), formwork and curing. The updated textbook provides the basics of material and structural behaviour and the fundamental knowledge needed for the design, assessment or retrofitting of concrete structures. It will be essential reading material for graduate students in the field of structural concrete, and also assist designers and consultants in understanding the background to the rules they apply in their practice. Furthermore, it should prove particularly valuable to users of the new editions of Eurocode 2 for concrete buildings, bridges and container structures, which are based only partly on MC90 and partly on more recent knowledge which was not included in the 1999 edition of the textbook.