Coherent X Ray Optics

Coherent X Ray Optics Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Coherent X Ray Optics book. This book definitely worth reading, it is an incredibly well-written.

Coherent X-Ray Optics

Author : David Paganin
Publisher : OUP Oxford
Page : 424 pages
File Size : 47,5 Mb
Release : 2006-01-12
Category : Science
ISBN : 9780191524318

Get Book

Coherent X-Ray Optics by David Paganin Pdf

This book gives a thorough treatment of the rapidly-expanding field of coherent x-ray optics, which has recently experienced something of a renaissance with the availability of third-generation synchrotron sources. It is the first book of its kind. The author begins with a treatment of the fundamentals of x-ray diffraction for both coherent and partially coherent radiation, together with the interactions of x-rays with matter. X-ray sources, optics elements and detectors are then discussed, with an emphasis on their role in coherent x-ray optics. Various facets of coherent x-ray imaging are then discussed, including holography, interferometry, self imaging, phase contrast and phase retrieval. Lastly, the foundations of the new field of singular x-ray optics are examined. Most topics are developed from first principles, with numerous references given to the contemporary research literature. This book will be useful to x-ray physicists and students, together with optical physicists and engineers who wish to learn more about the fascinating subject of coherent x-ray optics.

An Introduction to X-Ray Physics, Optics, and Applications

Author : Carolyn A. MacDonald
Publisher : Princeton University Press
Page : 368 pages
File Size : 42,8 Mb
Release : 2017-06-13
Category : Science
ISBN : 9781400887736

Get Book

An Introduction to X-Ray Physics, Optics, and Applications by Carolyn A. MacDonald Pdf

In this book, Carolyn A. MacDonald provides a comprehensive introduction to the physics of a wide range of x-ray applications, optics, and analysis tools. Theory is applied to practical considerations of optics and applications ranging from astronomy to medical imaging and materials analysis. Emphasizing common physical concepts that underpin diverse phenomena and applications of x-ray physics, the book opens with a look at nuclear medicine, motivating further investigations into scattering, detection, and noise statistics. The second section explores topics in x-ray generation, including characteristic emission, x-ray fluorescence analysis, bremsstrahlung emission, and synchrotron and laser sources. The third section details the main forms of interaction, including the physics of photoelectric absorption, coherent and Compton scattering, diffraction, and refractive, reflective, and diffractive optics. Applications in this section include x-ray spectroscopy, crystallography, and dose and contrast in radiography. A bibliography is included at the end of every chapter, and solutions to chapter problems are provided in the appendix. Based on a course for advanced undergraduates and graduate students in physics and related sciences and also intended for researchers, An Introduction to X-Ray Physics, Optics, and Applications offers a thorough survey of the physics of x-ray generation and of interaction with materials. Common aspects of diverse phenomena emphasized Theoretical development tied to practical applications Suitable for advanced undergraduate and graduate students in physics or related sciences, as well as researchers Examples and problems include applications drawn from medicine, astronomy, and materials analysis Detailed solutions are provided for all examples and problems

X-Ray Optics and Microanalysis 1992, Proceedings of the 13th INT Conference, 31 August-4 September 1992, Manchester, UK

Author : P.B. Kenway,P.J. Duke
Publisher : CRC Press
Page : 690 pages
File Size : 54,7 Mb
Release : 1993-03-01
Category : Technology & Engineering
ISBN : 0750302550

Get Book

X-Ray Optics and Microanalysis 1992, Proceedings of the 13th INT Conference, 31 August-4 September 1992, Manchester, UK by P.B. Kenway,P.J. Duke Pdf

The first ICXOM congress held in Cambridge was the brain-child of Dr. Ellis Cosslett, founder of the Electron Optics Section of the Cavendish Laboratory. Dr. Cosslett pioneered research in x-ray optics and microanalysis and retained a close interest in all subject applications for this area of research, including physics, materials science, chemistry, and biology. X-Ray Optics and Microanalysis 1992 was held in his memory. At a special symposium, friends and colleagues reviewed the present status of research in x-ray optics and microanalysis. S.J. Pennycook of Oak Ridge National Laboratory, D.B. Williams of Lehigh University, J.A. Venables et al. of Arizona State University and Sussex University, and C. Jacobsen et al. of SUNY, Stony Brook are among the researchers whose papers are included in this volume.

Optical Technologies for Extreme-Ultraviolet and Soft X-ray Coherent Sources

Author : Federico Canova,Luca Poletto
Publisher : Springer
Page : 205 pages
File Size : 49,9 Mb
Release : 2015-08-17
Category : Science
ISBN : 9783662474433

Get Book

Optical Technologies for Extreme-Ultraviolet and Soft X-ray Coherent Sources by Federico Canova,Luca Poletto Pdf

The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e.g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advanced. New problems were faced for the realization of optical components of beamlines demanding to manage coherent X-ray photons, e.g. the preservation of coherence and time structure of ultra short pulses.

Soft X-ray Optics

Author : Eberhard Spiller
Publisher : SPIE Press
Page : 296 pages
File Size : 48,8 Mb
Release : 1994
Category : Medical
ISBN : 0819416541

Get Book

Soft X-ray Optics by Eberhard Spiller Pdf

This text describes optics mainly in the 10 to 500 angstrom wavelength region. These wavelengths are 50 to 100 times shorter than those for visible light and 50 to 100 times longer than the wavelengths of medical x rays or x-ray diffraction from natural crystals. There have been substantial advances during the last 20 years, which one can see as an extension of optical technology to shorter wavelengths or as an extension of x-ray diffraction to longer wavelengths. Artificial diffracting structures like zone plates and multilayer mirrors are replacing the natural crystals of x-ray diffraction. Some of these structures can now be fabricated to have diffraction-limited resolution. The new possibilities are described in a simple, tutorial way.

X-ray waveguide optics

Author : Sarah Hoffmann-Urlaub
Publisher : Göttingen University Press
Page : 134 pages
File Size : 47,6 Mb
Release : 2017
Category : Electronic
ISBN : 9783863953089

Get Book

X-ray waveguide optics by Sarah Hoffmann-Urlaub Pdf

Modern x-ray sources and analysis techniques such as lens less imaging combined with phase retrieval algorithms allow for resolving structure sizes in the nanometer range. For this purpose optics have to be employed, ensuring small focal spot dimensions simultaneously with high photon densities. Furthermore, the wave front behind the optics is required to be smooth enabling for high resolution imaging. Combining all these properties, x-ray waveguides are well suited to perform this task, since the intensity distribution behind the guide is restricted in two dimensions serving as a secondary quasi point-source without wave-front aberrations, showing also a high divergence, suitable for resolving fine features. Importantly, the radiation provided by the waveguide reveals a high degree of coherence, required by many imaging techniques. The waveguide itself consists of an air-filled channel embedded in a solid matrix; typical materials are silicon, germanium or quartz. While the entrance area is nano-sized, the channel length is in the millimeter-range, this way posing challenges to fabricate high aspect ratio geometries. Since the functioning of x-ray waveguides is based on the total reflection at small incident angles, the surface roughness of the channel walls must be as low as possible to avoid scattering and hence loss of intensity. To fulfill these demanding conditions, a process scheme involving spin-coating, electron beam lithography, wet development, reactive ion etching and wafer bonding is optimized within this work. To gain deeper insights into the principle of wave guiding finite difference simulations are performed, also opening access for advanced design considerations such as gratings, tapered and curved channels, or beamsplitters, enabling for constructing novel x-ray tools as for example time delay devices or interferometers. Waveguides in all geometries are tested at synchrotron sources, accomplishing new benchmarks in x-ray optical performance. Here, the x-ray beam leaving the channel, propagates out to a pixel array detector in the far-field region. From the recorded data the intensity distribution in the near-field directly behind the waveguide is reconstructed, revealing an outstanding agreement with the simulations and electron micrographs. Since the radiation field of the waveguide is well-characterized and also tunable to meet the requirements of both the measurement setup and the sample, they are suited of a broad field of applications in coherent x-ray imaging.

Nanoscale Photonic Imaging

Author : Tim Salditt,Alexander Egner,D. Russell Luke
Publisher : Springer Nature
Page : 634 pages
File Size : 51,8 Mb
Release : 2020-06-09
Category : Science
ISBN : 9783030344139

Get Book

Nanoscale Photonic Imaging by Tim Salditt,Alexander Egner,D. Russell Luke Pdf

This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.

Neutron and X-ray Optics

Author : Jay Theodore Cremer, Jr.
Publisher : Newnes
Page : 1124 pages
File Size : 42,9 Mb
Release : 2013-02-18
Category : Science
ISBN : 9780124071599

Get Book

Neutron and X-ray Optics by Jay Theodore Cremer, Jr. Pdf

Covering a wide range of topics related to neutron and x-ray optics, this book explores the aspects of neutron and x-ray optics and their associated background and applications in a manner accessible to both lower-level students while retaining the detail necessary to advanced students and researchers. It is a self-contained book with detailed mathematical derivations, background, and physical concepts presented in a linear fashion. A wide variety of sources were consulted and condensed to provide detailed derivations and coverage of the topics of neutron and x-ray optics as well as the background material needed to understand the physical and mathematical reasoning directly related or indirectly related to the theory and practice of neutron and x-ray optics. The book is written in a clear and detailed manner, making it easy to follow for a range of readers from undergraduate and graduate science, engineering, and medicine. It will prove beneficial as a standalone reference or as a complement to textbooks. Supplies a historical context of covered topics. Detailed presentation makes information easy to understand for researchers within or outside the field. Incorporates reviews of all relevant literature in one convenient resource.

Nonlinear Optics, Quantum Optics, and Ultrafast Phenomena with X-Rays

Author : Bernhard Adams
Publisher : Springer Science & Business Media
Page : 348 pages
File Size : 53,9 Mb
Release : 2012-12-06
Category : Science
ISBN : 9781461503873

Get Book

Nonlinear Optics, Quantum Optics, and Ultrafast Phenomena with X-Rays by Bernhard Adams Pdf

Nonlinear Optics, Quantum Optics, and Ultrafast Phenomena with X-Rays is an introduction to cutting-edge science that is beginning to emerge on state-of-the-art synchrotron radiation facilities and will come to flourish with the x-ray free-electron lasers currently being planned. It is intended for the use by scientists at synchrotron radiation facilities working with the combination of x-rays and lasers and those preparing for the science at x-ray free-electron lasers. In the past decade synchrotron radiation sources have experienced a tremendous increase in their brilliance and other figures of merit. This progress, driven strongly by the scientific applications, is still going on and may actually be accelerating with the advent of x-ray free-electron lasers. As a result, a confluence of x-ray and laser physics is taking place, due to the increasing importance of laser concepts, such as coherence and nonlinear optics to the x-ray community and the importance of x-ray optics to the laser-generation of ultrashort pulses of x-rays.

Light and X-Ray Optics

Author : Emil Zolotoyabko
Publisher : Walter de Gruyter GmbH & Co KG
Page : 420 pages
File Size : 45,8 Mb
Release : 2023-09-07
Category : Science
ISBN : 9783111140896

Get Book

Light and X-Ray Optics by Emil Zolotoyabko Pdf

Contemporary optics is the foundation of many of today’s technologies including various focusing and defocusing devices, microscopies and imaging techniques. Light and X-ray Optis for Materials Scientists and Engineers offers a guide to basic concepts and provides an accessible framework for understanding this highly application-relevant branch of science for materials scientists, physicists, chemists, biologists, and engineers trained in different disciplines. The text links the fundamentals of optics to modern applications, especially for promotion of nanotechnology and life science, such as conventional, near-field, confocal, phase-contrast microscopies and imaging schemes based on interference and diffraction phenomena. Written by a noted expert and experienced instructor, the book contains numerous worked examples throughout to help the reader gain a thorough understanding of the concepts and information presented. The text covers a wide range of relevant topics, including reflection, refraction, and focusing phenomena, wave polarization and birefringence in crystals, optics in negative materials, metamaterials, and photonic structures, holography, light and X-ray interferometry, extensive description of diffraction optics, including dynamical X-ray diffraction, and more.

Coherent X-ray diffractive imaging on the single-cell-level of microbial samples

Author : Robin Niklas Wilke
Publisher : Göttingen University Press
Page : 254 pages
File Size : 49,6 Mb
Release : 2015
Category : Electronic
ISBN : 9783863951900

Get Book

Coherent X-ray diffractive imaging on the single-cell-level of microbial samples by Robin Niklas Wilke Pdf

Since its first experimental demonstration in 1999, Coherent X-Ray Diffractive Imaging has become one of the most promising high resolution X-Ray imaging techniques using coherent radiation produced by brilliant synchrotron storage rings. The ability to directly invert diffraction data with the help of advanced algorithms has paved the way for microscopic investigations and wave-field analyses on the spatial scale of nanometres without the need for inefficient imaging lenses. X-Ray phase contrast which is a measure of the electron density is an important contrast mode of soft biological specimens. For the case of many dominant elements of soft biological matter, the electron density can be converted into an effective mass density offering a unique quantitative information channel which may shed light on important questions such as DNA compaction in the bacterial nucleoid through ‚weighing with light‘. In this work X-Ray phase contrast maps have been obtained from different biological samples by exploring different methods. In particular, the techniques Ptychography and Waveguide-Holographic-Imaging have been used to obtain twodimensional and three-dimensional mass density maps on the single-cell-level of freeze-dried cells of the bacteria Deinococcus radiodurans, Bacillus subtilis and Bacillus thuringiensis allowing, for instance, to estimate the dry weight of the bacterial genome in a near native state. On top of this, reciprocal space information from coherent small angle X-Ray scattering (cellular Nano-Diffraction) of the fine structure of the bacterial cells has been recorded in a synergistic manner and has been analysed down to a resolution of about 2.3/nm exceeding current limits of direct imaging approaches. Furthermore, the dynamic range of present detector technology being one of the major limiting factors of ptychographic phasing of farfield diffraction data has been significantly increased. Overcoming this problem for the case of the very intense X-Ray beam produced by Kirkpatrick-Baez mirrors has been explored by using semi-transparent central stops.

X-Ray Lasers 2018

Author : Michaela Kozlová,Jaroslav Nejdl
Publisher : Springer Nature
Page : 199 pages
File Size : 55,6 Mb
Release : 2020-03-06
Category : Science
ISBN : 9783030354534

Get Book

X-Ray Lasers 2018 by Michaela Kozlová,Jaroslav Nejdl Pdf

These proceedings gather a selection of invited and contributed papers presented during the 16th International Conference on X-Ray Lasers (ICXRL 2018), held in Prague, Czech Republic, from 7 to 12 October 2018. The conference is part of an ongoing series dedicated to recent developments in the science and technology of X-ray lasers and other coherent X-ray sources, with an additional focus on supporting technologies, instrumentation and applications. The book highlights advances in a wide range of fields including laser and discharge-pumped plasma X-ray lasers, the injection and seeding of X-ray amplifiers, high-order harmonic generation and ultrafast phenomena, X-ray free electron lasers, novel schemes for (in)coherent XUV, X-ray and γ-ray generation, XUV and X-ray imaging, optics and metrology, X-rays and γ-rays for fundamental science, the practical implementation of X-ray lasers, XFELs and super-intense lasers, and the applications and industrial uses of X-ray lasers.

Wave Optical Simulations of X-ray Nano-focusing Optics

Author : Markus Osterhoff
Publisher : Universitätsverlag Göttingen
Page : 167 pages
File Size : 55,9 Mb
Release : 2012
Category : Electronic
ISBN : 9783863950545

Get Book

Wave Optical Simulations of X-ray Nano-focusing Optics by Markus Osterhoff Pdf

Curved x-ray multilayer mirrors focus synchrotron beams down to tens of nano metres. A wave-optical theory describing propagation of two waves in an elliptically curved focusing multilayer mirror is developed in this thesis. Using numerical integration, the layer shapes can be optimised for reflectivity and aberrations. Within this framework, performance of both existing and currently upgraded synchrotron beamlines is simulated. Using a more theoretical model case, limits of the theory are studied. A significant part of this work is dedicated to partial spatial coherence, modelled using the method of stochastic superpositions. Coherence propagation and filtering by x-ray waveguides is shown analytically and numerically. This comprehensive model is put forward that shall help in development and testing of new algorithms for a variety of imaging techniques using coherent x-ray beams. Advanced simulations accounting for real structure effects are compared to experimental data obtained at the GINIX instrument at the coherence beamline P10 at PETRA III, DESY. This thesis presents results of a collaboration between the Georg-August-Universität Göttingen and the European Synchrotron Radiation Facility (ESRF) Grenoble.

Ultraviolet and Soft X-Ray Free-Electron Lasers

Author : Peter Schmüser,Martin Dohlus,Jörg Rossbach
Publisher : Springer
Page : 207 pages
File Size : 42,6 Mb
Release : 2008-09-18
Category : Science
ISBN : 9783540795728

Get Book

Ultraviolet and Soft X-Ray Free-Electron Lasers by Peter Schmüser,Martin Dohlus,Jörg Rossbach Pdf

The high scienti?c interest in coherent X-ray light sources has stimulated world-wide e?orts in developing X-ray lasers. In this book a particularly promising approach is described, the free-electron laser (FEL), which is p- sued worldwide and holds the promise to deliver ultra-bright X-ray pulses of femtosecond duration. Other types of X-ray lasers are not discussed nor do we try a comparison of the relative virtues and drawbacks of di?erent concepts. The book has an introductory character and is written in the style of a universitytextbookforthemanynewcomerstothe?eldoffree-electronlasers, graduate students as well as accelerator physicists, engineers and technicians; it is not intended to be a scienti?c monograph for the experts in the ?eld. Building on lectures by one of us (J. R.) at the CERN Accelerator School, and motivated by the positive response to a series of seminars on “FEL t- ory for pedestrians”, given by P. S. within the framework of the Academic Training Program at DESY, we have aimed at presenting the theory of the low-gainandthehigh-gainFELinaclearandconcisemathematicallanguage. Particular emphasis is put on explaining and justifying the assumptions and approximations that are needed to obtain the di?erential equations descr- ing the FEL dynamics. Although we have tried our best to be “simple”, the mathematical derivations are certainly not always as simple as one would like them to be. However, we are not aware of any easier approach to the FEL theory. Some of the more involved calculations are put into the appendices.