Computational Electromagnetism

Computational Electromagnetism Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Computational Electromagnetism book. This book definitely worth reading, it is an incredibly well-written.

Computational Electromagnetism

Author : Alain Bossavit
Publisher : Academic Press
Page : 352 pages
File Size : 52,9 Mb
Release : 1998-02-04
Category : Technology & Engineering
ISBN : 0080529666

Get Book

Computational Electromagnetism by Alain Bossavit Pdf

Computational Electromagnetism refers to the modern concept of computer-aided analysis, and design, of virtually all electric devices such as motors, machines, transformers, etc., as well as of the equipment inthe currently booming field of telecommunications, such as antennas, radars, etc. The present book is uniquely written to enable the reader-- be it a student, a scientist, or a practitioner-- to successfully perform important simulation techniques and to design efficient computer software for electromagnetic device analysis. Numerous illustrations, solved exercises, original ideas, and an extensive and up-to-date bibliography make it a valuable reference for both experts and beginners in the field. A researcher and practitioner will find in it information rarely available in other sources, such as on symmetry, bilateral error bounds by complimentarity, edge and face elements, treatment of infinite domains, etc. At the same time, the book is a useful teaching tool for courses in computational techniques in certain fields of physics and electrical engineering. As a self-contained text, it presents an extensive coverage of the most important concepts from Maxwells equations to computer-solvable algebraic systems-- for both static, quasi-static, and harmonic high-frequency problems. Benefits To the Engineer A sound background necessary not only to understand the principles behind variational methods and finite elements, but also to design pertinent and well-structured software. To the Specialist in Numerical Modeling The book offers new perspectives of practical importance on classical issues: the underlying symmetry of Maxwell equations, their interaction with other fields of physics in real-life modeling, the benefits of edge and face elements, approaches to error analysis, and "complementarity." To the Teacher An expository strategy that will allow you to guide the student along a safe and easy route through otherwise difficult concepts: weak formulations and their relation to fundamental conservation principles of physics, functional spaces, Hilbert spaces, approximation principles, finite elements, and algorithms for solving linear systems. At a higher level, the book provides a concise and self-contained introduction to edge elements and their application to mathematical modeling of the basic electromagnetic phenomena, and static problems, such as eddy-current problems and microwaves in cavities. To the Student Solved exercises, with "hint" and "full solution" sections, will both test and enhance the understanding of the material. Numerous illustrations will help in grasping difficult mathematical concepts.

Computational Electromagnetics

Author : Anders Bondeson,Thomas Rylander,Pär Ingelström
Publisher : Springer Science & Business Media
Page : 232 pages
File Size : 54,7 Mb
Release : 2006-02-07
Category : Mathematics
ISBN : 9780387261607

Get Book

Computational Electromagnetics by Anders Bondeson,Thomas Rylander,Pär Ingelström Pdf

Describes most popular computational methods used to solve problems in electromagnetics Matlab code is included throughout, so that the reader can implement the various techniques discussed Exercises included

Theory and Computation of Electromagnetic Fields

Author : Jian-Ming Jin
Publisher : John Wiley & Sons
Page : 744 pages
File Size : 47,7 Mb
Release : 2015-08-10
Category : Science
ISBN : 9781119108085

Get Book

Theory and Computation of Electromagnetic Fields by Jian-Ming Jin Pdf

Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.

Mathematical Foundations of Computational Electromagnetism

Author : Franck Assous,Patrick Ciarlet,Simon Labrunie
Publisher : Springer
Page : 458 pages
File Size : 44,9 Mb
Release : 2018-06-09
Category : Mathematics
ISBN : 9783319708423

Get Book

Mathematical Foundations of Computational Electromagnetism by Franck Assous,Patrick Ciarlet,Simon Labrunie Pdf

This book presents an in-depth treatment of various mathematical aspects of electromagnetism and Maxwell's equations: from modeling issues to well-posedness results and the coupled models of plasma physics (Vlasov-Maxwell and Vlasov-Poisson systems) and magnetohydrodynamics (MHD). These equations and boundary conditions are discussed, including a brief review of absorbing boundary conditions. The focus then moves to well‐posedness results. The relevant function spaces are introduced, with an emphasis on boundary and topological conditions. General variational frameworks are defined for static and quasi-static problems, time-harmonic problems (including fixed frequency or Helmholtz-like problems and unknown frequency or eigenvalue problems), and time-dependent problems, with or without constraints. They are then applied to prove the well-posedness of Maxwell’s equations and their simplified models, in the various settings described above. The book is completed with a discussion of dimensionally reduced models in prismatic and axisymmetric geometries, and a survey of existence and uniqueness results for the Vlasov-Poisson, Vlasov-Maxwell and MHD equations. The book addresses mainly researchers in applied mathematics who work on Maxwell’s equations. However, it can be used for master or doctorate-level courses on mathematical electromagnetism as it requires only a bachelor-level knowledge of analysis.

Computational Electromagnetism

Author : Houssem Haddar,Ralf Hiptmair,Peter Monk,Rodolfo Rodríguez
Publisher : Springer
Page : 240 pages
File Size : 53,5 Mb
Release : 2015-07-20
Category : Mathematics
ISBN : 9783319193069

Get Book

Computational Electromagnetism by Houssem Haddar,Ralf Hiptmair,Peter Monk,Rodolfo Rodríguez Pdf

Presenting topics that have not previously been contained in a single volume, this book offers an up-to-date review of computational methods in electromagnetism, with a focus on recent results in the numerical simulation of real-life electromagnetic problems and on theoretical results that are useful in devising and analyzing approximation algorithms. Based on four courses delivered in Cetraro in June 2014, the material covered includes the spatial discretization of Maxwell’s equations in a bounded domain, the numerical approximation of the eddy current model in harmonic regime, the time domain integral equation method (with an emphasis on the electric-field integral equation) and an overview of qualitative methods for inverse electromagnetic scattering problems. Assuming some knowledge of the variational formulation of PDEs and of finite element/boundary element methods, the book is suitable for PhD students and researchers interested in numerical approximation of partial differential equations and scientific computing.

Applied Computational Electromagnetics

Author : Nikolaos K. Uzunoglu,Konstantina S. Nikita,Dimitra I. Kaklamani
Publisher : Springer Science & Business Media
Page : 533 pages
File Size : 54,7 Mb
Release : 2012-12-06
Category : Computers
ISBN : 9783642596292

Get Book

Applied Computational Electromagnetics by Nikolaos K. Uzunoglu,Konstantina S. Nikita,Dimitra I. Kaklamani Pdf

@EOI: AEI rEOMETPEI Epigram of the Academy of Plato in Athens Electromagnetism, the science of forces arising from Amber (HAEKTPON) and the stone of Magnesia (MArNHLIA), has been the fOWldation of major scientific breakthroughs, such as Quantum Mechanics and Theory of Relativity, as well as most leading edge technologies of the twentieth century. The accuracy of electromagnetic fields computations for engineering purposes has been significantly improved during the last decades, due to the deVelopment of efficient computational techniques and the availability of high performance computing. The present book is based on the contributions and discussions developed during the NATO Advanced Study Institute on Applied Computational Electromagnetics: State of the Art and Future Trends, which has taken place in Hellas, on the island of Samos, very close to the birthplace of Electromagnetism. The book covers the fundamental concepts, recent developments and advanced applications of Integral Equation and Metliod of Moments Techniques, Finite Element and BOWldary Element Methods, Finite Difference Time Domain and Transmission Line Methods. Furthermore, topics related to Computational Electromagnetics, such as Inverse Scattering, Semi-Analytical Methods and Parallel Processing Techniques are included. The collective presentation of the principal computational electromagnetics techniques, developed to handle diverse challenging leading edge technology problems, is expected to be useful to researchers and postgraduate students working in various topics of electromagnetic technologies.

Molecular Electromagnetism: A Computational Chemistry Approach

Author : Stephan P. A. Sauer
Publisher : OUP Oxford
Page : 321 pages
File Size : 40,6 Mb
Release : 2011-08-25
Category : Science
ISBN : 9780191621000

Get Book

Molecular Electromagnetism: A Computational Chemistry Approach by Stephan P. A. Sauer Pdf

This is a textbook on the theory and calculation of molecular electromagnetic and spectroscopic properties designed for a one-semester course with lectures and exercise classes. The idea of the book is to provide thorough background knowledge for the calculation of electromagnetic and spectroscopic properties of molecules with modern quantum chemical software packages. The book covers the derivation of the molecular Hamiltonian in the presence of electromagnetic fields, and of time-independent and time-dependent perturbation theory in the form of response theory. It defines many molecular properties and spectral parameters and gives an introduction to modern computational chemistry methods.

Computational Methods for Electromagnetics

Author : Andrew F. Peterson,Scott L. Ray,Raj Mittra
Publisher : Universities Press
Page : 600 pages
File Size : 53,7 Mb
Release : 2001
Category : Electromagnetism
ISBN : 8173713774

Get Book

Computational Methods for Electromagnetics by Andrew F. Peterson,Scott L. Ray,Raj Mittra Pdf

This book is an indispensable resource for making efficient and accurate formulations for electromagnetics applications and their numerical treatment, Employing a unified and coherent approach that is unmatched in the field, the authors deatil both integral and differential equations using the method-of-moments and finite-element procedures.

Computational Electromagnetics with MATLAB, Fourth Edition

Author : Matthew N.O. Sadiku
Publisher : CRC Press
Page : 687 pages
File Size : 50,8 Mb
Release : 2018-07-20
Category : Technology & Engineering
ISBN : 9781351365093

Get Book

Computational Electromagnetics with MATLAB, Fourth Edition by Matthew N.O. Sadiku Pdf

This fourth edition of the text reflects the continuing increase in awareness and use of computational electromagnetics and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite-difference time-domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. It teaches the readers how to pose, numerically analyze, and solve EM problems, to give them the ability to expand their problem-solving skills using a variety of methods, and to prepare them for research in electromagnetism. Includes new homework problems in each chapter. Each chapter is updated with the current trends in CEM. Adds a new appendix on CEM codes, which covers commercial and free codes. Provides updated MATLAB code.

Electromagnetic Theory and Computation

Author : Paul W. Gross,P. Robert Kotiuga
Publisher : Cambridge University Press
Page : 296 pages
File Size : 43,7 Mb
Release : 2004-06-14
Category : Mathematics
ISBN : 0521801605

Get Book

Electromagnetic Theory and Computation by Paul W. Gross,P. Robert Kotiuga Pdf

This book explores the connection between algebraic structures in topology and computational methods for 3-dimensional electric and magnetic field computation. The connection between topology and electromagnetism has been known since the 19th century, but there has been little exposition of its relevance to computational methods in modern topological language. This book is an effort to close that gap. It will be of interest to people working in finite element methods for electromagnetic computation and those who have an interest in numerical and industrial applications of algebraic topology.

Computational Electromagnetics

Author : Carsten Carstensen,Stefan Funken,Wolfgang Hackbusch,Ronald W. Hoppe,Peter Monk
Publisher : Springer Science & Business Media
Page : 217 pages
File Size : 40,7 Mb
Release : 2012-12-06
Category : Science
ISBN : 9783642557453

Get Book

Computational Electromagnetics by Carsten Carstensen,Stefan Funken,Wolfgang Hackbusch,Ronald W. Hoppe,Peter Monk Pdf

The dimmed outlines of phenomenal things all into one another unless we put on the merge focusing-glass of theory, and screw it up some times to one pitch of definition and sometimes to another, so as to see down into different depths through the great millstone of the world James Clerk Maxwell (1831 - 1879) For a long time after the foundation of the modern theory of electromag netism by James Clerk Maxwell in the 19th century, the mathematical ap proach to electromagnetic field problems was for a long time dominated by the analytical investigation of Maxwell's equations. The rapid development of computing facilities during the last century has then necessitated appropriate numerical methods and algorithmic tools for the simulation of electromagnetic phenomena. During the last few decades, a new research area "Computational Electromagnetics" has emerged com prising the mathematical analysis, design, implementation, and application of numerical schemes to simulate all kinds of relevant electromagnetic pro cesses. This area is still rapidly evolving with a wide spectrum of challenging issues featuring, among others, such problems as the proper choice of spatial discretizations (finite differences, finite elements, finite volumes, boundary elements), fast solvers for the discretized equations (multilevel techniques, domain decomposition methods, multipole, panel clustering), and multiscale aspects in microelectronics and micromagnetics.

Computational Electromagnetics

Author : Carsten Carstensen
Publisher : Springer Science & Business Media
Page : 234 pages
File Size : 55,6 Mb
Release : 2003-02-13
Category : Computers
ISBN : 3540443924

Get Book

Computational Electromagnetics by Carsten Carstensen Pdf

The contributions in this book by leading international experts in the field of electromagnetic field computation cover a wide area of contemporary research activities. They clearly underline the important role of modeling, analysis and numerical methods to provide powerful tools for the simulation of electromagnetic phenomena. The main topics range from the mathematical analysis of Maxwell's equations including its proper spatial discretizations (edge elements, boundary element methods, finite integration), and efficient iterative solution techniques (multigrid, domain decomposition) to multiscale aspects in micromagnetics. The reader will get acquainted with many facets of modern computational techniques and its applications to relevant problems in electromagnetism.

Computational Geo-Electromagnetics

Author : Viacheslav V. Spichak
Publisher : Unknown
Page : 462 pages
File Size : 43,9 Mb
Release : 2020-02
Category : Electronic
ISBN : 9780128196311

Get Book

Computational Geo-Electromagnetics by Viacheslav V. Spichak Pdf

Computational Geo-Electromagnetics: Methods, Models, and Forecasts, Volume Five in the Computational Geophysics series, is devoted to techniques for building of geoelectrical models from electromagnetic data, featuring Bayesian statistical analysis and neural network algorithms. These models are applied to studying the geoelectrical structure of famous volcanoes (i.e., Vesuvio, Kilauea, Elbrus, Komagatake, Hengill) and geothermal zones (i.e., Travale, Italy; Soultz-sous-Forets, Elsace). Methodological recommendations are given on electromagnetic sounding of faults as well as geothermal and hydrocarbon reservoirs. Techniques for forecasting of petrophysical properties from the electrical resistivity as proxy parameter are also considered. Computational Geo-Electromagnetics: Methods, Models, and Forecasts offers techniques and algorithms for building geoelectrical models under conditions of rare or irregularly distributed EM data and/or lack of prior geological and geophysical information. This volume also includes methodological guidelines on interpretation of electromagnetic sounding data depending on goals of the study. Finally, it details computational algorithms for using electrical resistivity for properties beyond boreholes. Provides algorithms for inversion of incomplete, rare or irregularly distributed EM data Features methodological issues of building geoelectrical models Offers techniques for retrieving petrophysical properties from EM sounding data and well logs

Advances in Time-Domain Computational Electromagnetic Methods

Author : Qiang Ren,Su Yan,Atef Z. Elsherbeni
Publisher : John Wiley & Sons
Page : 724 pages
File Size : 55,6 Mb
Release : 2022-11-15
Category : Science
ISBN : 9781119808398

Get Book

Advances in Time-Domain Computational Electromagnetic Methods by Qiang Ren,Su Yan,Atef Z. Elsherbeni Pdf

Advances in Time-Domain Computational Electromagnetic Methods Discover state-of-the-art time domain electromagnetic modeling and simulation algorithms Advances in Time-Domain Computational Electromagnetic Methods delivers a thorough exploration of recent developments in time domain computational methods for solving complex electromagnetic problems. The book discusses the main time domain computational electromagnetics techniques, including finite-difference time domain (FDTD), finite-element time domain (FETD), discontinuous Galerkin time domain (DGTD), time domain integral equation (TDIE), and other methods in electromagnetic, multiphysics modeling and simulation, and antenna designs. The book bridges the gap between academic research and real engineering applications by comprehensively surveying the full picture of current state-of-the-art time domain electromagnetic simulation techniques. Among other topics, it offers readers discussions of automatic load balancing schemes for DG-FETD/SETD methods and convolution quadrature time domain integral equation methods for electromagnetic scattering. Advances in Time-Domain Computational Electromagnetic Methods also includes: Introductions to cylindrical, spherical, and symplectic FDTD, as well as FDTD for metasurfaces with GSTC and FDTD for nonlinear metasurfaces Explorations of FETD for dispersive and nonlinear media and SETD-DDM for periodic/ quasi-periodic arrays Discussions of TDIE, including explicit marching-on-in-time solvers for second-kind time domain integral equations, TD-SIE DDM, and convolution quadrature time domain integral equation methods for electromagnetic scattering Treatments of deep learning, including time domain electromagnetic forward and inverse modeling using a differentiable programming platform Ideal for undergraduate and graduate students studying the design and development of various kinds of communication systems, as well as professionals working in these fields, Advances in Time-Domain Computational Electromagnetic Methods is also an invaluable resource for those taking advanced graduate courses in computational electromagnetic methods and simulation techniques.

Computational Electromagnetics—Retrospective and Outlook

Author : Iftikhar Ahmed,Zhizhang (David) Chen
Publisher : Springer
Page : 319 pages
File Size : 48,7 Mb
Release : 2014-08-27
Category : Technology & Engineering
ISBN : 9789812870957

Get Book

Computational Electromagnetics—Retrospective and Outlook by Iftikhar Ahmed,Zhizhang (David) Chen Pdf

The book will cover the past, present and future developments of field theory and computational electromagnetics. The first two chapters will give an overview of the historical developments and the present the state-of-the-art in computational electromagnetics. These two chapters will set the stage for discussing recent progress, new developments, challenges, trends and major directions in computational electromagnetics with three main emphases: a. Modeling of ever larger structures with multi-scale dimensions and multi-level descriptions (behavioral, circuit, network and field levels) and transient behaviours b. Inclusions of physical effects other than electromagnetic: quantum effects, thermal effects, mechanical effects and nano scale features c. New developments in available computer hardware, programming paradigms (MPI, Open MP, CUDA and Open CL) and the associated new modeling approaches These are the current emerging topics in the area of computational electromagnetics and may provide readers a comprehensive overview of future trends and directions in the area. The book is written for students, research scientists, professors, design engineers and consultants who engaged in the fields of design, analysis and research of the emerging technologies related to computational electromagnetics, RF/microwave, optimization, new numerical methods, as well as accelerator simulator, dispersive materials, nano-antennas, nano-waveguide, nano-electronics, terahertz applications, bio-medical and material sciences. The book may also be used for those involved in commercializing electromagnetic and related emerging technologies, sensors and the semiconductor industry. The book can be used as a reference book for graduates and post graduates. It can also be used as a text book for workshops and continuing education for researchers and design engineers.