Electromagnetic Theory And Computation

Electromagnetic Theory And Computation Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Electromagnetic Theory And Computation book. This book definitely worth reading, it is an incredibly well-written.

Electromagnetic Theory and Computation

Author : Paul W. Gross,P. Robert Kotiuga
Publisher : Cambridge University Press
Page : 290 pages
File Size : 43,8 Mb
Release : 2011-04-28
Category : Mathematics
ISBN : 0521175232

Get Book

Electromagnetic Theory and Computation by Paul W. Gross,P. Robert Kotiuga Pdf

Although topology was recognized by Gauss and Maxwell to play a pivotal role in the formulation of electromagnetic boundary value problems, it is a largely unexploited tool for field computation. The development of algebraic topology since Maxwell provides a framework for linking data structures, algorithms, and computation to topological aspects of three-dimensional electromagnetic boundary value problems. This book attempts to expose the link between Maxwell and a modern approach to algorithms. The first chapters lay out the relevant facts about homology and cohomology, stressing their interpretations in electromagnetism. These topological structures are subsequently tied to variational formulations in electromagnetics, the finite element method, algorithms, and certain aspects of numerical linear algebra. A recurring theme is the formulation of and algorithms for the problem of making branch cuts for computing magnetic scalar potentials and eddy currents. Appendices bridge the gap between the material presented and standard expositions of differential forms, Hodge decompositions, and tools for realizing representatives of homology classes as embedded manifolds.

Theory and Computation of Electromagnetic Fields

Author : Jian-Ming Jin
Publisher : John Wiley & Sons
Page : 744 pages
File Size : 41,5 Mb
Release : 2015-08-10
Category : Science
ISBN : 9781119108085

Get Book

Theory and Computation of Electromagnetic Fields by Jian-Ming Jin Pdf

Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.

Electromagnetic Theory and Computation

Author : Paul Wolfgang Gross
Publisher : Unknown
Page : 278 pages
File Size : 49,5 Mb
Release : 2004
Category : Electromagnetic theory
ISBN : 0511315570

Get Book

Electromagnetic Theory and Computation by Paul Wolfgang Gross Pdf

Although topology was recognized by Gauss and Maxwell to play a pivotal role in the formulation of electromagnetic boundary value problems, it is a largely unexploited tool for field computation. The development of algebraic topology since Maxwell provides a framework for linking data structures, algorithms, and computation to topological aspects of three-dimensional electromagnetic boundary value problems. This book, first published in 2004, attempts to expose the link between Maxwell and a modern approach to algorithms. The first chapters lay out the relevant facts about homology and cohomology, stressing their interpretations in electromagnetism. These topological structures are subsequently tied to variational formulations in electromagnetics, the finite element method, algorithms, and certain aspects of numerical linear algebra. A recurring theme is the formulation of and algorithms for the problem of making branch cuts for computing magnetic scalar potentials and eddy currents.

Electromagnetic Theory and Computation

Author : Gross, Paul Wolfgang Gross
Publisher : Unknown
Page : 278 pages
File Size : 51,6 Mb
Release : 2004
Category : Electromagnetic theory
ISBN : 051121152X

Get Book

Electromagnetic Theory and Computation by Gross, Paul Wolfgang Gross Pdf

Although topology was recognized by Gauss and Maxwell to play a pivotal role in the formulation of electromagnetic boundary value problems, it is a largely unexploited tool for field computation. The development of algebraic topology since Maxwell provides a framework for linking data structures, algorithms, and computation to topological aspects of three-dimensional electromagnetic boundary value problems. This book, first published in 2004, attempts to expose the link between Maxwell and a modern approach to algorithms. The first chapters lay out the relevant facts about homology and cohomology, stressing their interpretations in electromagnetism. These topological structures are subsequently tied to variational formulations in electromagnetics, the finite element method, algorithms, and certain aspects of numerical linear algebra. A recurring theme is the formulation of and algorithms for the problem of making branch cuts for computing magnetic scalar potentials and eddy currents.

Electromagnetic Theory and Computation

Author : Paul W. Gross,P. Robert Kotiuga
Publisher : Cambridge University Press
Page : 296 pages
File Size : 48,9 Mb
Release : 2004-06-14
Category : Mathematics
ISBN : 0521801605

Get Book

Electromagnetic Theory and Computation by Paul W. Gross,P. Robert Kotiuga Pdf

This book explores the connection between algebraic structures in topology and computational methods for 3-dimensional electric and magnetic field computation. The connection between topology and electromagnetism has been known since the 19th century, but there has been little exposition of its relevance to computational methods in modern topological language. This book is an effort to close that gap. It will be of interest to people working in finite element methods for electromagnetic computation and those who have an interest in numerical and industrial applications of algebraic topology.

Modeling and Computations in Electromagnetics

Author : Habib Ammari
Publisher : Springer Science & Business Media
Page : 235 pages
File Size : 53,5 Mb
Release : 2008-01-12
Category : Technology & Engineering
ISBN : 9783540737780

Get Book

Modeling and Computations in Electromagnetics by Habib Ammari Pdf

This is nothing less than an essential text in what is a new and growing discipline. Electromagnetic modeling and computations is expanding as a result of the steadily increasing demand for designing electrical devices, modeling electromagnetic materials, and simulating electromagnetic fields in nanoscale structures. The aim of this volume is to bring together prominent worldwide experts to review state-of-the-art developments and future trends of modeling and computations in electromagnetics.

Electromagnetic Field Computation by Network Methods

Author : Leopold B. Felsen,Mauro Mongiardo,Peter Russer
Publisher : Springer Science & Business Media
Page : 219 pages
File Size : 45,6 Mb
Release : 2009-03-05
Category : Technology & Engineering
ISBN : 9783540939467

Get Book

Electromagnetic Field Computation by Network Methods by Leopold B. Felsen,Mauro Mongiardo,Peter Russer Pdf

In this monograph, the authors propose a systematic and rigorous treatment of electromagnetic field representations in complex structures. The architecture suggested in this book accommodates use of different numerical methods as well as alternative Green's function representations in each of the subdomains resulting from a partitioning of the overall problem. The subdomains are regions of space where electromagnetic energy is stored and are described in terms of equivalent circuit representations based either on lumped element circuits or on transmission lines. Connection networks connect the subcircuits representing the subdomains. The connection networks are lossless, don't store energy and represent the overall problem topology. This is similar to what is done in circuit theory and permits a phrasing of the solution of EM field problems in complex structures by Network-oriented methods.

Electromagnetic Waves, Materials, and Computation with MATLAB®

Author : Dikshitulu K. Kalluri
Publisher : CRC Press
Page : 862 pages
File Size : 55,6 Mb
Release : 2016-04-19
Category : Technology & Engineering
ISBN : 9781439838686

Get Book

Electromagnetic Waves, Materials, and Computation with MATLAB® by Dikshitulu K. Kalluri Pdf

Readily available commercial software enables engineers and students to perform routine calculations and design without necessarily having a sufficient conceptual understanding of the anticipated solution. The software is so user-friendly that it usually produces a beautiful colored visualization of that solution, often camouflaging the fact that t

Computational Electromagnetism

Author : Alain Bossavit
Publisher : Academic Press
Page : 352 pages
File Size : 52,8 Mb
Release : 1998-02-04
Category : Technology & Engineering
ISBN : 0080529666

Get Book

Computational Electromagnetism by Alain Bossavit Pdf

Computational Electromagnetism refers to the modern concept of computer-aided analysis, and design, of virtually all electric devices such as motors, machines, transformers, etc., as well as of the equipment inthe currently booming field of telecommunications, such as antennas, radars, etc. The present book is uniquely written to enable the reader-- be it a student, a scientist, or a practitioner-- to successfully perform important simulation techniques and to design efficient computer software for electromagnetic device analysis. Numerous illustrations, solved exercises, original ideas, and an extensive and up-to-date bibliography make it a valuable reference for both experts and beginners in the field. A researcher and practitioner will find in it information rarely available in other sources, such as on symmetry, bilateral error bounds by complimentarity, edge and face elements, treatment of infinite domains, etc. At the same time, the book is a useful teaching tool for courses in computational techniques in certain fields of physics and electrical engineering. As a self-contained text, it presents an extensive coverage of the most important concepts from Maxwells equations to computer-solvable algebraic systems-- for both static, quasi-static, and harmonic high-frequency problems. Benefits To the Engineer A sound background necessary not only to understand the principles behind variational methods and finite elements, but also to design pertinent and well-structured software. To the Specialist in Numerical Modeling The book offers new perspectives of practical importance on classical issues: the underlying symmetry of Maxwell equations, their interaction with other fields of physics in real-life modeling, the benefits of edge and face elements, approaches to error analysis, and "complementarity." To the Teacher An expository strategy that will allow you to guide the student along a safe and easy route through otherwise difficult concepts: weak formulations and their relation to fundamental conservation principles of physics, functional spaces, Hilbert spaces, approximation principles, finite elements, and algorithms for solving linear systems. At a higher level, the book provides a concise and self-contained introduction to edge elements and their application to mathematical modeling of the basic electromagnetic phenomena, and static problems, such as eddy-current problems and microwaves in cavities. To the Student Solved exercises, with "hint" and "full solution" sections, will both test and enhance the understanding of the material. Numerous illustrations will help in grasping difficult mathematical concepts.

Computational Methods for Electromagnetics

Author : Andrew F. Peterson,Scott L. Ray,Raj Mittra
Publisher : Universities Press
Page : 600 pages
File Size : 44,5 Mb
Release : 2001
Category : Electromagnetism
ISBN : 8173713774

Get Book

Computational Methods for Electromagnetics by Andrew F. Peterson,Scott L. Ray,Raj Mittra Pdf

This book is an indispensable resource for making efficient and accurate formulations for electromagnetics applications and their numerical treatment, Employing a unified and coherent approach that is unmatched in the field, the authors deatil both integral and differential equations using the method-of-moments and finite-element procedures.

Field Computation by Moment Methods

Author : Roger F. Harrington
Publisher : Wiley-IEEE Press
Page : 248 pages
File Size : 47,5 Mb
Release : 1993
Category : Science
ISBN : UOM:39015035275539

Get Book

Field Computation by Moment Methods by Roger F. Harrington Pdf

"An IEEE reprinting of this classic 1968 edition, FIELD COMPUTATION BY MOMENT METHODS is the first book to explore the computation of electromagnetic fields by the most popular method for the numerical solution to electromagnetic field problems. It presents a unified approach to moment methods by employing the concepts of linear spaces and functional analysis. Written especially for those who have a minimal amount of experience in electromagnetic theory, this book illustrates theoretical and mathematical concepts to prepare all readers with the skills they need to apply the method of moments to new, engineering-related problems. Written especially for those who have a minimal amount of experience in electromagnetic theory, theoretical and mathematical concepts are illustrated by examples that prepare all readers with the skills they need to apply the method of moments to new, engineering-related problems."

Theory and Computation of Electromagnetic Fields in Layered Media

Author : Vladimir Okhmatovski,Shucheng Zheng
Publisher : John Wiley & Sons
Page : 756 pages
File Size : 51,7 Mb
Release : 2024-04-09
Category : Science
ISBN : 9781119763215

Get Book

Theory and Computation of Electromagnetic Fields in Layered Media by Vladimir Okhmatovski,Shucheng Zheng Pdf

Explore the algorithms and numerical methods used to compute electromagnetic fields in multi-layered media In Theory and Computation of Electromagnetic Fields in Layered Media, two distinguished electrical engineering researchers deliver a detailed and up-to-date overview of the theory and numerical methods used to determine electromagnetic fields in layered media. The book begins with an introduction to Maxwell’s equations, the fundamentals of electromagnetic theory, and concepts and definitions relating to Green’s function. It then moves on to solve canonical problems in vertical and horizontal dipole radiation, describe Method of Moments schemes, discuss integral equations governing electromagnetic fields, and explains the Michalski-Zheng theory of mixed-potential Green’s function representation in multi-layered media. Chapters on the evaluation of Sommerfeld integrals, procedures for far field evaluation, and the theory and application of hierarchical matrices are also included, along with: A thorough introduction to free-space Green’s functions, including the delta-function model for point charge and dipole current Comprehensive explorations of the traditional form of layered medium Green’s function in three dimensions Practical discussions of electro-quasi-static and magneto-quasi-static fields in layered media, including electrostatic fields in two and three dimensions In-depth examinations of the rational function fitting method, including direct spectra fitting with VECTFIT algorithms Perfect for scholars and students of electromagnetic analysis in layered media, Theory and Computation of Electromagnetic Fields in Layered Media will also earn a place in the libraries of CAD industry engineers and software developers working in the area of computational electromagnetics.

Principles of Electromagnetic Waves and Materials

Author : Dikshitulu K. Kalluri
Publisher : CRC Press
Page : 465 pages
File Size : 49,8 Mb
Release : 2013-05-29
Category : Technology & Engineering
ISBN : 9781466593725

Get Book

Principles of Electromagnetic Waves and Materials by Dikshitulu K. Kalluri Pdf

Principles of Electromagnetic Waves and Materials is a condensed version of the author’s previously published textbook, Electromagnetic Waves, Materials, and Computation with MATLAB®. This book focuses on lower-level courses, primarily senior undergraduate and graduate students in electromagnetic waves and materials courses. It takes an integrative approach to the subject of electromagnetics by supplementing quintessential "old-school" information and methods with the appropriate amount of material on plasmas for exposing the students to the broad area of Plasmonics and by striking a balance between theoretical and practical aspects. Ancillary materials are available upon qualifying course adoption.

Integral Equation Methods for Electromagnetic and Elastic Waves

Author : Weng Chew,Mei-Song Tong,Bin HU
Publisher : Springer Nature
Page : 241 pages
File Size : 46,8 Mb
Release : 2022-05-31
Category : Technology & Engineering
ISBN : 9783031017070

Get Book

Integral Equation Methods for Electromagnetic and Elastic Waves by Weng Chew,Mei-Song Tong,Bin HU Pdf

Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral equation research. Also, learning the fundamentals of linear elastic wave theory does not require a quantum leap for electromagnetic practitioners. Integral equation methods have been around for several decades, and their introduction to electromagnetics has been due to the seminal works of Richmond and Harrington in the 1960s. There was a surge in the interest in this topic in the 1980s (notably the work of Wilton and his coworkers) due to increased computing power. The interest in this area was on the wane when it was demonstrated that differential equation methods, with their sparse matrices, can solve many problems more efficiently than integral equation methods. Recently, due to the advent of fast algorithms, there has been a revival in integral equation methods in electromagnetics. Much of our work in recent years has been in fast algorithms for integral equations, which prompted our interest in integral equation methods. While previously, only tens of thousands of unknowns could be solved by integral equation methods, now, tens of millions of unknowns can be solved with fast algorithms. This has prompted new enthusiasm in integral equation methods. Table of Contents: Introduction to Computational Electromagnetics / Linear Vector Space, Reciprocity, and Energy Conservation / Introduction to Integral Equations / Integral Equations for Penetrable Objects / Low-Frequency Problems in Integral Equations / Dyadic Green's Function for Layered Media and Integral Equations / Fast Inhomogeneous Plane Wave Algorithm for Layered Media / Electromagnetic Wave versus Elastic Wave / Glossary of Acronyms

Electromagnetic Theory and Applications for Photonic Crystals

Author : Kiyotoshi Yasumoto
Publisher : CRC Press
Page : 327 pages
File Size : 42,9 Mb
Release : 2018-10-03
Category : Science
ISBN : 9781351836999

Get Book

Electromagnetic Theory and Applications for Photonic Crystals by Kiyotoshi Yasumoto Pdf

Photonic technology promises much faster computing, massive parallel processing, and an evolutionary step in the digital age. The search continues for devices that will enable this paradigm, and these devices will be based on photonic crystals. Modeling is a key process in developing crystals with the desired characteristics and performance, and Electromagnetic Theory and Applications for Photonic Crystals provides the electromagnetic-theoretical models that can be effectively applied to modeling photonic crystals and related optical devices. The book supplies eight self-contained chapters that detail various analytical, numerical, and computational approaches to the modeling of scattering and guiding problems. For each model, the chapter begins with a brief introduction, detailed formulations of periodic structures and photonic crystals, and practical applications to photonic crystal devices. Expert contributors discuss the scattering matrix method, multipole theory of scattering and propagation, model of layered periodic arrays for photonic crystals, the multiple multipole program, the mode-matching method for periodic metallic structures, the method of lines, the finite-difference frequency-domain technique, and the finite-difference time-domain technique. Based on original research and application efforts, Electromagnetic Theory and Applications for Photonic Crystals supplies a broad array of practical tools for analyzing and designing devices that will form the basis for a new age in computing.