Prediction Of Protein Structures Functions And Interactions

Prediction Of Protein Structures Functions And Interactions Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Prediction Of Protein Structures Functions And Interactions book. This book definitely worth reading, it is an incredibly well-written.

Prediction of Protein Structures, Functions, and Interactions

Author : Janusz M. Bujnicki
Publisher : John Wiley & Sons
Page : 302 pages
File Size : 54,6 Mb
Release : 2008-12-23
Category : Science
ISBN : 0470741902

Get Book

Prediction of Protein Structures, Functions, and Interactions by Janusz M. Bujnicki Pdf

The growing flood of new experimental data generated by genome sequencing has provided an impetus for the development of automated methods for predicting the functions of proteins that have been deduced by sequence analysis and lack experimental characterization. Prediction of Protein Structures, Functions and Interactions presents a comprehensive overview of methods for prediction of protein structure or function, with the emphasis on their availability and possibilities for their combined use. Methods of modeling of individual proteins, prediction of their interactions, and docking of complexes are put in the context of predicting gene ontology (biological process, molecular function, and cellular component) and discussed in the light of their contribution to the emerging field of systems biology. Topics covered include: first steps of protein sequence analysis and structure prediction automated prediction of protein function from sequence template-based prediction of three-dimensional protein structures: fold-recognition and comparative modelling template-free prediction of three-dimensional protein structures quality assessment of protein models prediction of molecular interactions: from small ligands to large protein complexes macromolecular docking integrating prediction of structure, function, and interactions Prediction of Protein Structures, Functions and Interactions focuses on the methods that have performed well in CASPs, and which are constantly developed and maintained, and are freely available to academic researchers either as web servers or programs for local installation. It is an essential guide to the newest, best methods for prediction of protein structure and functions, for researchers and advanced students working in structural bioinformatics, protein chemistry, structural biology and drug discovery.

Introduction to Protein Structure Prediction

Author : Huzefa Rangwala,George Karypis
Publisher : John Wiley & Sons
Page : 611 pages
File Size : 45,9 Mb
Release : 2011-03-16
Category : Science
ISBN : 9781118099469

Get Book

Introduction to Protein Structure Prediction by Huzefa Rangwala,George Karypis Pdf

A look at the methods and algorithms used to predict protein structure A thorough knowledge of the function and structure of proteins is critical for the advancement of biology and the life sciences as well as the development of better drugs, higher-yield crops, and even synthetic bio-fuels. To that end, this reference sheds light on the methods used for protein structure prediction and reveals the key applications of modeled structures. This indispensable book covers the applications of modeled protein structures and unravels the relationship between pure sequence information and three-dimensional structure, which continues to be one of the greatest challenges in molecular biology. With this resource, readers will find an all-encompassing examination of the problems, methods, tools, servers, databases, and applications of protein structure prediction and they will acquire unique insight into the future applications of the modeled protein structures. The book begins with a thorough introduction to the protein structure prediction problem and is divided into four themes: a background on structure prediction, the prediction of structural elements, tertiary structure prediction, and functional insights. Within those four sections, the following topics are covered: Databases and resources that are commonly used for protein structure prediction The structure prediction flagship assessment (CASP) and the protein structure initiative (PSI) Definitions of recurring substructures and the computational approaches used for solving sequence problems Difficulties with contact map prediction and how sophisticated machine learning methods can solve those problems Structure prediction methods that rely on homology modeling, threading, and fragment assembly Hybrid methods that achieve high-resolution protein structures Parts of the protein structure that may be conserved and used to interact with other biomolecules How the loop prediction problem can be used for refinement of the modeled structures The computational model that detects the differences between protein structure and its modeled mutant Whether working in the field of bioinformatics or molecular biology research or taking courses in protein modeling, readers will find the content in this book invaluable.

Prediction of Protein Structure and the Principles of Protein Conformation

Author : G.D. Fasman
Publisher : Springer Science & Business Media
Page : 796 pages
File Size : 53,5 Mb
Release : 2012-12-06
Category : Science
ISBN : 9781461315711

Get Book

Prediction of Protein Structure and the Principles of Protein Conformation by G.D. Fasman Pdf

The prediction of the conformation of proteins has developed from an intellectual exercise into a serious practical endeavor that has great promise to yield new stable enzymes, products of pharmacological significance, and catalysts of great potential. With the application of predic tion gaining momentum in various fields, such as enzymology and immunology, it was deemed time that a volume be published to make available a thorough evaluation of present methods, for researchers in this field to expound fully the virtues of various algorithms, to open the field to a wider audience, and to offer the scientific public an opportunity to examine carefully its successes and failures. In this manner the practitioners of the art could better evaluate the tools and the output so that their expectations and applications could be more realistic. The editor has assembled chapters by many of the main contributors to this area and simultaneously placed their programs at three national resources so that they are readily available to those who wish to apply them to their personal interests. These algorithms, written by their originators, when utilized on pes or larger computers, can instantaneously take a primary amino acid sequence and produce a two-or three-dimensional artistic image that gives satisfaction to one's esthetic sensibilities and food for thought concerning the structure and function of proteins. It is in this spirit that this volume was envisaged.

Protein Structure Prediction

Author : David Webster
Publisher : Springer Science & Business Media
Page : 425 pages
File Size : 52,5 Mb
Release : 2008-02-03
Category : Science
ISBN : 9781592593682

Get Book

Protein Structure Prediction by David Webster Pdf

The number of protein sequences grows each year, yet the number of structures deposited in the Protein Data Bank remains relatively small. The importance of protein structure prediction cannot be overemphasized, and this volume is a timely addition to the literature in this field. Protein Structure Prediction: Methods and Protocols is a departure from the normal Methods in Molecular Biology series format. By its very nature, protein structure prediction demands that there be a greater mix of theoretical and practical aspects than is normally seen in this series. This book is aimed at both the novice and the experienced researcher who wish for detailed inf- mation in the field of protein structure prediction; a major intention here is to include important information that is needed in the day-to-day work of a research scientist, important information that is not always decipherable in scientific literature. Protein Structure Prediction: Methods and Protocols covers the topic of protein structure prediction in an eclectic fashion, detailing aspects of pred- tion that range from sequence analysis (a starting point for many algorithms) to secondary and tertiary methods, on into the prediction of docked complexes (an essential point in order to fully understand biological function). As this volume progresses, the authors contribute their expert knowledge of protein structure prediction to many disciplines, such as the identification of motifs and domains, the comparative modeling of proteins, and ab initio approaches to protein loop, side chain, and protein prediction.

From Protein Structure to Function with Bioinformatics

Author : Daniel John Rigden
Publisher : Springer Science & Business Media
Page : 330 pages
File Size : 51,9 Mb
Release : 2008-12-11
Category : Science
ISBN : 9781402090585

Get Book

From Protein Structure to Function with Bioinformatics by Daniel John Rigden Pdf

Proteins lie at the heart of almost all biological processes and have an incredibly wide range of activities. Central to the function of all proteins is their ability to adopt, stably or sometimes transiently, structures that allow for interaction with other molecules. An understanding of the structure of a protein can therefore lead us to a much improved picture of its molecular function. This realisation has been a prime motivation of recent Structural Genomics projects, involving large-scale experimental determination of protein structures, often those of proteins about which little is known of function. These initiatives have, in turn, stimulated the massive development of novel methods for prediction of protein function from structure. Since model structures may also take advantage of new function prediction algorithms, the first part of the book deals with the various ways in which protein structures may be predicted or inferred, including specific treatment of membrane and intrinsically disordered proteins. A detailed consideration of current structure-based function prediction methodologies forms the second part of this book, which concludes with two chapters, focusing specifically on case studies, designed to illustrate the real-world application of these methods. With bang up-to-date texts from world experts, and abundant links to publicly available resources, this book will be invaluable to anyone who studies proteins and the endlessly fascinating relationship between their structure and function.

Molecular Biology of The Cell

Author : Bruce Alberts
Publisher : Unknown
Page : 0 pages
File Size : 52,8 Mb
Release : 2002
Category : Cytology
ISBN : 0815332181

Get Book

Molecular Biology of The Cell by Bruce Alberts Pdf

Protein Structure Prediction

Author : Igor F. Tsigelny
Publisher : Internat'l University Line
Page : 540 pages
File Size : 45,7 Mb
Release : 2002
Category : Science
ISBN : 096368177X

Get Book

Protein Structure Prediction by Igor F. Tsigelny Pdf

New Approaches of Protein Function Prediction from Protein Interaction Networks

Author : Jingyu Hou
Publisher : Academic Press
Page : 124 pages
File Size : 53,6 Mb
Release : 2017-01-13
Category : Mathematics
ISBN : 9780128099445

Get Book

New Approaches of Protein Function Prediction from Protein Interaction Networks by Jingyu Hou Pdf

New Approaches of Protein Function Prediction from Protein Interaction Networks contains the critical aspects of PPI network based protein function prediction, including semantically assessing the reliability of PPI data, measuring the functional similarity between proteins, dynamically selecting prediction domains, predicting functions, and establishing corresponding prediction frameworks. Functional annotation of proteins is vital to biological and clinical research and other applications due to the important roles proteins play in various biological processes. Although the functions of some proteins have been annotated via biological experiments, there are still many proteins whose functions are yet to be annotated due to the limitations of existing methods and the high cost of experiments. To overcome experimental limitations, this book helps users understand the computational approaches that have been rapidly developed for protein function prediction. Provides innovative approaches and new developments targeting key issues in protein function prediction Presents heuristic ideas for further research in this challenging area

On protein structure, function and modularity from an evolutionary perspective

Author : Robert Pilstål
Publisher : Linköping University Electronic Press
Page : 77 pages
File Size : 53,6 Mb
Release : 2018-05-31
Category : Electronic
ISBN : 9789176853474

Get Book

On protein structure, function and modularity from an evolutionary perspective by Robert Pilstål Pdf

We are compounded entities, given life by a complex molecular machinery. When studying these molecules we have to make sense of a diverse set of dynamical nanostructures with wast and intricate patterns of interactions. Protein polymers is one of the major groups of building blocks of such nanostructures which fold up into more or less distinct three dimensional structures. Due to their shape, dynamics and chemical properties proteins are able to perform a plethora of specific functions essential to all known cellular lifeforms. The connection between protein sequence, translated into protein structure and in the continuation into protein function is well accepted but poorly understood. Malfunction in the process of protein folding is known to be implicated in natural aging, cancer and degenerative diseases such as Alzheimer's. Protein folds are described hierarchically by structural ontologies such as SCOP, CATH and Pfam all which has yet to succeed in deciphering the natural language of protein function. These paradigmatic views centered on protein structure fail to describe more mutable entities, such as intrinsically disordered proteins (IDPs) which lack a clear defined structure. As of 2012, about two thirds of cancer patients was predicted to survive past 5 years of diagnosis. Despite this, about a third do not survive and numerous of successfully treated patients suffer from secondary conditions due to chemotherapy, surgery and the like. In order to handle cancer more efficiently we have to better understand the underlying molecular mechanisms. Elusive to standard methods of investigation, IDPs have a central role in pathology; dysfunction in IDPs are key factors in cellular system failures such as cancer, as many IDPs are hub regulators for major cell functions. These IDPs carry short conserved functional boxes, that are not described by known ontologies, which suggests the existence of a smaller entity. In an investigation of a pair of such boxes of c-MYC, a plausible structural model of its interacting with Pin1 emerged, but such a model still leaves the observer with a puzzle of understanding the actual function of that interaction. If the protein is represented as a graph and modeled as the interaction patterns instead of as a structural entity, another picture emerges. As a graph, there is a parable from that of the boxes of IDPs, to that of sectors of allosterically connected residues and the theory of foldons and folding units. Such a description is also useful in deciphering the implications of specific mutations. In order to render a functional description feasible for both structured and disordered proteins, there is a need of a model separate from form and structure. Realized as protein primes, patterns of interaction, which has a specific function that can be defined as prime interactions and context. With function defined as interactions, it might be possible that the discussion of proteins and their mechanisms is thereby simplified to the point rendering protein structural determination merely supplementary to understanding protein function. Människan byggs upp av celler, de i sin tur består av än mindre beståndsdelar; livets molekyler. Dessa fungerar som mekaniska byggstenar, likt maskiner och robotar som sliter vid fabrikens band; envar utförandes en absolut nödvändig funktion för cellens, och hela kroppens, fortsatta överlevnad. De av livets molekyler som beskrivs centralt i den här avhandling är proteiner, vilka i sin tur består utav en lång kedja, med olika typer av länkar, som likt garn lindar upp sig i ett nystan av en (mer eller mindre...) bestämd struktur som avgör dess roll och funktion i cellen. Intrinsiellt oordnade proteiner (IDP) går emot denna enkla åskådning; de är proteiner som saknar struktur och beter sig mer likt spaghetti i vatten än en maskin. IDP är ändå funktionella och bär på centrala roller i cellens maskineri; exempel är oncoproteinet c-Myc som agerar "gaspedal" för cellen - fel i c-Myc's funktion leder till att cellerna löper amok, delar sig hejdlöst och vi får cancer. Man har upptäckt att c-Myc har en ombytlig struktur vi inte kan se; studier av punktvisa förändringar, mutationer, i kedjan av byggstenar hos c-Myc visar att många länkar har viktiga roller i funktionen. Detta ger oss bättre förståelse om cancer men samtidigt är laboratoriearbetet både komplicerat och dyrt; här kan evolutionen vägleda oss och avslöja hemligheterna snabbare. Molekylär evolution studeras genom att beräkna variation i proteinkedjan mellan besläktade arter som finns lagrade i databaser; detta visar snabbt, via nätverksanalys och grafteori, vilka delar av proteinet som är centrala och kopplade till varandra av nödvändighet för artens fortlevnad. På så vis hjälper evolutionen oss att förstå proteinfunktioner via modeller baserade på proteinernas interaktioner snarare än deras struktur. Samma modeller kan nyttjas för att förstå dynamiska förlopp och skillnader mellan normala och patologiska varianter av proteiner; mutationer kan uppstå i vår arvsmassa som kan leda till sjukdom. Genom analys av proteinernas kopplingsnätverk i grafmodellerna kan man bättre förutsäga vilka mutationer som är farligare än andra. Dessutom har det visat sig att en sådan representation kan ge bättre förståelse för den normala funktionen hos ett protein än vad en proteinstruktur kan. Här introduceras även konceptet proteinprimärer, vilket är en abstrakt representation av proteiner centrerad på deras interaktiva mönster, snarare än på partikulär form och struktur. Det är en förhoppning att en sådan representation skall förenkla diskussionen anbelangande proteinfunktion så till den grad att strukturbestämmelse av proteiner, som är en mycket kostsam och tidskrävande process, till viss mån kan anses vara sekundär i betydelse jämfört med funktionellt modellerande baserat på evolutionära data extraherade ur våra sekvensdatabaser.

Computational Methods for Protein Structure Prediction and Modeling

Author : Ying Xu,Dong Xu,Jie Liang
Publisher : Springer Science & Business Media
Page : 408 pages
File Size : 53,8 Mb
Release : 2007-08-24
Category : Science
ISBN : 9780387683720

Get Book

Computational Methods for Protein Structure Prediction and Modeling by Ying Xu,Dong Xu,Jie Liang Pdf

Volume One of this two-volume sequence focuses on the basic characterization of known protein structures, and structure prediction from protein sequence information. Eleven chapters survey of the field, covering key topics in modeling, force fields, classification, computational methods, and structure prediction. Each chapter is a self contained review covering definition of the problem and historical perspective; mathematical formulation; computational methods and algorithms; performance results; existing software; strengths, pitfalls, challenges, and future research.

Introduction to Proteins

Author : Amit Kessel,Nir Ben-Tal
Publisher : CRC Press
Page : 654 pages
File Size : 55,6 Mb
Release : 2010-12-17
Category : Medical
ISBN : 1439810729

Get Book

Introduction to Proteins by Amit Kessel,Nir Ben-Tal Pdf

As the tools and techniques of structural biophysics assume greater roles in biological research and a range of application areas, learning how proteins behave becomes crucial to understanding their connection to the most basic and important aspects of life. With more than 350 color images throughout, Introduction to Proteins: Structure, Function, and Motion presents a unified, in-depth treatment of the relationship between the structure, dynamics, and function of proteins. Taking a structural–biophysical approach, the authors discuss the molecular interactions and thermodynamic changes that transpire in these highly complex molecules. The text incorporates various biochemical, physical, functional, and medical aspects. It covers different levels of protein structure, current methods for structure determination, energetics of protein structure, protein folding and folded state dynamics, and the functions of intrinsically unstructured proteins. The authors also clarify the structure–function relationship of proteins by presenting the principles of protein action in the form of guidelines. This comprehensive, color book uses numerous proteins as examples to illustrate the topics and principles and to show how proteins can be analyzed in multiple ways. It refers to many everyday applications of proteins and enzymes in medical disorders, drugs, toxins, chemical warfare, and animal behavior. Downloadable questions for each chapter are available at CRC Press Online.

Introduction to Proteins

Author : Amit Kessel,Nir Ben-Tal
Publisher : CRC Press
Page : 1489 pages
File Size : 49,5 Mb
Release : 2018-03-22
Category : Computers
ISBN : 9781498747219

Get Book

Introduction to Proteins by Amit Kessel,Nir Ben-Tal Pdf

Introduction to Proteins provides a comprehensive and state-of-the-art introduction to the structure, function, and motion of proteins for students, faculty, and researchers at all levels. The book covers proteins and enzymes across a wide range of contexts and applications, including medical disorders, drugs, toxins, chemical warfare, and animal behavior. Each chapter includes a Summary, Exercies, and References. New features in the thoroughly-updated second edition include: A brand-new chapter on enzymatic catalysis, describing enzyme biochemistry, classification, kinetics, thermodynamics, mechanisms, and applications in medicine and other industries. These are accompanied by multiple animations of biochemical reactions and mechanisms, accessible via embedded QR codes (which can be viewed by smartphones) An in-depth discussion of G-protein-coupled receptors (GPCRs) A wider-scale description of biochemical and biophysical methods for studying proteins, including fully accessible internet-based resources, such as databases and algorithms Animations of protein dynamics and conformational changes, accessible via embedded QR codes Additional features Extensive discussion of the energetics of protein folding, stability and interactions A comprehensive view of membrane proteins, with emphasis on structure-function relationship Coverage of intrinsically unstructured proteins, providing a complete, realistic view of the proteome and its underlying functions Exploration of industrial applications of protein engineering and rational drug design Each chapter includes a Summary, Exercies, and References Approximately 300 color images Downloadable solutions manual available at www.crcpress.com For more information, including all presentations, tables, animations, and exercises, as well as a complete teaching course on proteins' structure and function, please visit the author's website: http://ibis.tau.ac.il/wiki/nir_bental/index.php/Introduction_to_Proteins_Book. Praise for the first edition "This book captures, in a very accessible way, a growing body of literature on the structure, function and motion of proteins. This is a superb publication that would be very useful to undergraduates, graduate students, postdoctoral researchers, and instructors involved in structural biology or biophysics courses or in research on protein structure-function relationships." --David Sheehan, ChemBioChem, 2011 "Introduction to Proteins is an excellent, state-of-the-art choice for students, faculty, or researchers needing a monograph on protein structure. This is an immensely informative, thoroughly researched, up-to-date text, with broad coverage and remarkable depth. Introduction to Proteins would provide an excellent basis for an upper-level or graduate course on protein structure, and a valuable addition to the libraries of professionals interested in this centrally important field." --Eric Martz, Biochemistry and Molecular Biology Education, 2012

Homology Molecular Modeling

Author : Rafael Trindade Maia,Rômulo Maciel de Moraes Filho,Magnólia De Araújo Campos
Publisher : BoD – Books on Demand
Page : 147 pages
File Size : 47,6 Mb
Release : 2021-03-10
Category : Science
ISBN : 9781839628054

Get Book

Homology Molecular Modeling by Rafael Trindade Maia,Rômulo Maciel de Moraes Filho,Magnólia De Araújo Campos Pdf

Homology modeling is an extremely useful and versatile technique that is gaining more and more space and demand in research in computational and theoretical biology. This book, “Homology Molecular Modeling - Perspectives and Applications”, brings together unpublished chapters on this technique. In this book, 7 chapters are intimately related to the theme of molecular modeling, carefully selected and edited for academic and scientific readers. It is an indispensable read for anyone interested in the areas of bioinformatics and computational biology. Divided into 4 sections, the reader will have a didactic and comprehensive view of the theme, with updated and relevant concepts on the subject. This book was organized from researchers to researchers with the aim of spreading the fascinating area of molecular modeling by homology.

Computational Methods for Protein Structure Prediction and Modeling

Author : Ying Xu,Dong Xu,Jie Liang
Publisher : Springer Science & Business Media
Page : 335 pages
File Size : 55,5 Mb
Release : 2010-05-05
Category : Science
ISBN : 9780387688251

Get Book

Computational Methods for Protein Structure Prediction and Modeling by Ying Xu,Dong Xu,Jie Liang Pdf

Volume Two of this two-volume sequence presents a comprehensive overview of protein structure prediction methods and includes protein threading, De novo methods, applications to membrane proteins and protein complexes, structure-based drug design, as well as structure prediction as a systems problem. A series of appendices review the biological and chemical basics related to protein structure, computer science for structural informatics, and prerequisite mathematics and statistics.

Computer Simulations of Protein Structures and Interactions

Author : Serafin Fraga,J.M.Robert Parker,Jennifer M. Pocock
Publisher : Springer Science & Business Media
Page : 284 pages
File Size : 54,9 Mb
Release : 2013-04-17
Category : Science
ISBN : 9783642514999

Get Book

Computer Simulations of Protein Structures and Interactions by Serafin Fraga,J.M.Robert Parker,Jennifer M. Pocock Pdf

Protein engineering endeavors to design new peptides and proteins or to change the structural and/or functional characteristics of existing ones for specific purposes, opening the way for the development of new drugs. This work develops in a comprehensive way the theoretical formulation for the methods used in computer-assisted modeling and predictions, starting from the basic concepts and proceeding to the more sophisticated methods, such as Monte Carlo and molecular dynamics. An evaluation of the approximations inherent to the simulations will allow the reader to obtain a perspective of the possible deficiencies and difficulties and approach the task with realistic expectations. Examples from the authors laboratories, as well as from the literature provide useful information.