Biomaterials Effect On The Bone Microenvironment

Biomaterials Effect On The Bone Microenvironment Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Biomaterials Effect On The Bone Microenvironment book. This book definitely worth reading, it is an incredibly well-written.

Biomaterials Effect on the Bone Microenvironment

Author : Jiacan Su,Xiao Chen,Yingying Jing
Publisher : John Wiley & Sons
Page : 213 pages
File Size : 46,5 Mb
Release : 2022-12-21
Category : Technology & Engineering
ISBN : 9783527837816

Get Book

Biomaterials Effect on the Bone Microenvironment by Jiacan Su,Xiao Chen,Yingying Jing Pdf

Biomaterials Effect on the Bone Microenvironment Practical resource on clinical bone regeneration from a variety of related interdisciplinary researchers Biomaterials Effect on the Bone Microenvironment focuses on the structure-activity relationship between bone biomaterials and microenvironment regulation, presenting a systematic exposition from all aspects of biomaterials regulated microenvironment in bone regeneration and covering design strategies, applications, and mechanisms of biomaterials that regulate bone microenvironment, along with the methods for manufacturing biomaterials and their clinical translation. The subject’s potential challenges and future development direction are discussed, and the design and initiative principle of tailored biomaterials with various features, including bioactive components and physicochemical property, are elucidated in depth. Numerous biomaterials, including natural and synthetic, are summarized and compared. Their advantages and features are also evaluated, particularly in bone microenvironmental regulation and bone generation. Moreover, the stimulation mechanism of the microenvironment to bone generation is discussed in detail, including mechanical-support effect, redox effect, pro-angiogenesis effect, inflammatory immune effect, and anti-aging effect. Biomaterials Effect on the Bone Microenvironment provides further coverage of sample topics such as: Role of bone microenvironment and its associated biomaterials in modulation bone diseases, reviewing the biomaterials used to regulate bone microenvironment Relationship between biological factors of various materials and physiological functions in bone microenvironment Application of the third generation of biomaterials, which would regenerate the bone to regulate bone microenvironment Emerging biological material manufacturing technology and mechanisms of novel biomaterial modulating microenvironment for bone regeneration Future outlook of bone tissue engineering along with the general process of bone remodeling and regeneration With comprehensive coverage of one of the most promising and valuable candidates for clinical bone regeneration, Biomaterials Effect on the Bone Microenvironment is an ideal resource for materials scientists, biotechnologists, biochemists, bioengineers, orthopedists, and clinical chemists who want to stay on the cutting edge of this rapidly evolving field.

Detection of Biomaterial in Vivo Microenvironment PH (μe-PH) and Its Effect on Bone Defect Regeneration Under Unbalanced Bone Remodling Condition

Author : Wenlong Liu,刘文龙
Publisher : Unknown
Page : 128 pages
File Size : 50,5 Mb
Release : 2017-01-26
Category : Electronic
ISBN : 136103551X

Get Book

Detection of Biomaterial in Vivo Microenvironment PH (μe-PH) and Its Effect on Bone Defect Regeneration Under Unbalanced Bone Remodling Condition by Wenlong Liu,刘文龙 Pdf

This dissertation, "Detection of Biomaterial in Vivo Microenvironment PH (μe-pH) and Its Effect on Bone Defect Regeneration Under Unbalanced Bone Remodling Condition" by Wenlong, Liu, 刘文龙, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: In scenario of osteoporotic fracture, significantly higher activity of osteoclasts than osteoblasts may lead to continuous loss of bone in fracture/defect site. The impaired bone regeneration efficiency is the major barrier that influences endosseous implants to get a better performance, and this substantially increases the risk of a second fracture, non-union and aseptic implant loosening. Currently, there are no clinically approved biomaterials specifically tailored for applications in osteoporotic bones, and it is a challenging topic for material scientists to design proper orthopaedic biomaterials with biological functions for osteoporotic patients. The key issue for developing such biomaterials is to re-establish normal bone regeneration at the fracture site. According to the literatures, acid-base equilibrium is one of the most important factors that influence behaviours of bone cells. Therefore, microenvironment pH (μe-pH), which is influenced by implants biodegradation, may play a crucial role in guiding the localized bone regeneration. We then propose to reconstruct the regeneration balance by controlling the μe-pH through the application of biodegradable materials. The aims of this study include: 1. Establish a method for in vivo μe-pH detection; 2. Evaluate the effect of μe-pH on early-stage bone regeneration process; 3. Reveal the mechanisms by examining osteoclasts behavior in response to the change of μe-pH. The measurement of in vivo μe-pH was realized by using the pH microelectrode. Alkaline biodegradable materials generated an in vivo μe-pH which was higher than the normal physiological value, in particular, at the initial stage. The preliminary results indicated that osteoclasts may play important roles in the early-stage of defect healing process. Therefore, in order to further study the osteoclasts behaviors in response to the elevated μe-pH in a bone marrow microenvironment, a boneimplant interaction mouse model and a borosilicate glass system (with μe-pH gradient) with same type of ions and similar composition were developed. Based on our in vitro data, osteoclasts differentiation and pit-formation activity were significantly suppressed when RANKL-stimulated RAW264.7 cells were cultured in different glasses extracts which were adjusted to higher pH conditions (pH 7.59-8.02). Furthermore, the abnormal osteoclastogenesis potential of bone marrow cells in mouse after hindlimb unloading treatment could also be balanced by the elevated culture media pH (pH 7.62-7.84). In vivo, significantly suppressed osteoclasts activity together with a thicker new bone on materials surface were observed for glasses with higher e-pHs. Further assessments by using RT-PCR and immunostaining indicated that the decreased activity of matrix-degrading proteases (e.g. cathepsin K) may be one of the reasons for the suppressed osteoclasts activity under higher μe-pH conditions. In conclusion, the impaired regeneration process under osteoporotic or immobilized conditions may be ameliorated by adjusting the materials to generate a weakly-alkaline microenvironment. And the e-pH is an important and accessible factor which should be taken into consideration in the development of orthopaedic biomaterials, in particular for repair of osteoporotic bone fracture /defect. Subjects:

Biomaterials Effect on the Bone Microenvironment

Author : Jiacan Su,Yingying Jing,Xiao Chen
Publisher : John Wiley & Sons
Page : 213 pages
File Size : 46,6 Mb
Release : 2023-03-20
Category : Technology & Engineering
ISBN : 9783527350438

Get Book

Biomaterials Effect on the Bone Microenvironment by Jiacan Su,Yingying Jing,Xiao Chen Pdf

Biomaterials Effect on the Bone Microenvironment Practical resource on clinical bone regeneration from a variety of related interdisciplinary researchers Biomaterials Effect on the Bone Microenvironment focuses on the structure-activity relationship between bone biomaterials and microenvironment regulation, presenting a systematic exposition from all aspects of biomaterials regulated microenvironment in bone regeneration and covering design strategies, applications, and mechanisms of biomaterials that regulate bone microenvironment, along with the methods for manufacturing biomaterials and their clinical translation. The subject’s potential challenges and future development direction are discussed, and the design and initiative principle of tailored biomaterials with various features, including bioactive components and physicochemical property, are elucidated in depth. Numerous biomaterials, including natural and synthetic, are summarized and compared. Their advantages and features are also evaluated, particularly in bone microenvironmental regulation and bone generation. Moreover, the stimulation mechanism of the microenvironment to bone generation is discussed in detail, including mechanical-support effect, redox effect, pro-angiogenesis effect, inflammatory immune effect, and anti-aging effect. Biomaterials Effect on the Bone Microenvironment provides further coverage of sample topics such as: Role of bone microenvironment and its associated biomaterials in modulation bone diseases, reviewing the biomaterials used to regulate bone microenvironment Relationship between biological factors of various materials and physiological functions in bone microenvironment Application of the third generation of biomaterials, which would regenerate the bone to regulate bone microenvironment Emerging biological material manufacturing technology and mechanisms of novel biomaterial modulating microenvironment for bone regeneration Future outlook of bone tissue engineering along with the general process of bone remodeling and regeneration With comprehensive coverage of one of the most promising and valuable candidates for clinical bone regeneration, Biomaterials Effect on the Bone Microenvironment is an ideal resource for materials scientists, biotechnologists, biochemists, bioengineers, orthopedists, and clinical chemists who want to stay on the cutting edge of this rapidly evolving field.

Detection of Biomaterial in Vivo Microenvironment PH (μe-PH) and Its Effect on Bone Defect Regeneration Under Unbalanced Bone Remodling Condition

Author : Wenlong Liu,刘文龙
Publisher : Open Dissertation Press
Page : 404 pages
File Size : 45,7 Mb
Release : 2017-01-26
Category : Biomedical materials
ISBN : 1361035501

Get Book

Detection of Biomaterial in Vivo Microenvironment PH (μe-PH) and Its Effect on Bone Defect Regeneration Under Unbalanced Bone Remodling Condition by Wenlong Liu,刘文龙 Pdf

This dissertation, "Detection of Biomaterial in Vivo Microenvironment PH (μe-pH) and Its Effect on Bone Defect Regeneration Under Unbalanced Bone Remodling Condition" by Wenlong, Liu, 刘文龙, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: In scenario of osteoporotic fracture, significantly higher activity of osteoclasts than osteoblasts may lead to continuous loss of bone in fracture/defect site. The impaired bone regeneration efficiency is the major barrier that influences endosseous implants to get a better performance, and this substantially increases the risk of a second fracture, non-union and aseptic implant loosening. Currently, there are no clinically approved biomaterials specifically tailored for applications in osteoporotic bones, and it is a challenging topic for material scientists to design proper orthopaedic biomaterials with biological functions for osteoporotic patients. The key issue for developing such biomaterials is to re-establish normal bone regeneration at the fracture site. According to the literatures, acid-base equilibrium is one of the most important factors that influence behaviours of bone cells. Therefore, microenvironment pH (μe-pH), which is influenced by implants biodegradation, may play a crucial role in guiding the localized bone regeneration. We then propose to reconstruct the regeneration balance by controlling the μe-pH through the application of biodegradable materials. The aims of this study include: 1. Establish a method for in vivo μe-pH detection; 2. Evaluate the effect of μe-pH on early-stage bone regeneration process; 3. Reveal the mechanisms by examining osteoclasts behavior in response to the change of μe-pH. The measurement of in vivo μe-pH was realized by using the pH microelectrode. Alkaline biodegradable materials generated an in vivo μe-pH which was higher than the normal physiological value, in particular, at the initial stage. The preliminary results indicated that osteoclasts may play important roles in the early-stage of defect healing process. Therefore, in order to further study the osteoclasts behaviors in response to the elevated μe-pH in a bone marrow microenvironment, a boneimplant interaction mouse model and a borosilicate glass system (with μe-pH gradient) with same type of ions and similar composition were developed. Based on our in vitro data, osteoclasts differentiation and pit-formation activity were significantly suppressed when RANKL-stimulated RAW264.7 cells were cultured in different glasses extracts which were adjusted to higher pH conditions (pH 7.59-8.02). Furthermore, the abnormal osteoclastogenesis potential of bone marrow cells in mouse after hindlimb unloading treatment could also be balanced by the elevated culture media pH (pH 7.62-7.84). In vivo, significantly suppressed osteoclasts activity together with a thicker new bone on materials surface were observed for glasses with higher e-pHs. Further assessments by using RT-PCR and immunostaining indicated that the decreased activity of matrix-degrading proteases (e.g. cathepsin K) may be one of the reasons for the suppressed osteoclasts activity under higher μe-pH conditions. In conclusion, the impaired regeneration process under osteoporotic or immobilized conditions may be ameliorated by adjusting the materials to generate a weakly-alkaline microenvironment. And the e-pH is an important and accessible factor which should be taken into consideration in the development of orthopaedic biomaterials, in particular for repair of osteoporotic bone fracture /defect. Subjects:

Bone Repair Biomaterials

Author : Kendell Pawelec,J. A. Planell
Publisher : Woodhead Publishing
Page : 506 pages
File Size : 46,6 Mb
Release : 2018-11-29
Category : Technology & Engineering
ISBN : 9780081024522

Get Book

Bone Repair Biomaterials by Kendell Pawelec,J. A. Planell Pdf

Bone Repair Biomaterials: Regeneration and Clinical Applications, Second Edition, provides comprehensive reviews on materials science, engineering principles and recent advances. Sections review the fundamentals of bone repair and regeneration, discuss the science and properties of biomaterials used for bone repair, including metals, ceramics, polymers and composites, and discuss clinical applications and considerations, with chapters on such topics as orthopedic surgery, tissue engineering, implant retrieval, and ethics of bone repair biomaterials. This second edition includes more chapters on relevant biomaterials and a greatly expanded section on clinical applications, including bone repair applications in dental surgery, spinal surgery, and maxilo-facial and skull surgery. In addition, the book features coverage of long-term performance and failure of orthopedic devices. It will be an invaluable resource for researchers, scientists and clinicians concerned with the repair and restoration of bone. Provides a comprehensive review of the materials science, engineering principles and recent advances in this important area Presents new chapters on Surface coating of titanium, using bone repair materials in dental, spinal and maxilo-facial and skull surgery, and advanced manufacturing/3D printing Reviews the fundamentals of bone repair and regeneration, addressing social, economic and clinical challenges Examines the properties of biomaterials used for bone repair, with specific chapters assessing metals, ceramics, polymers and composites

Bioactive Materials for Bone Regeneration

Author : Jiang Chang,Xingdong Zhang,Kerong Dai
Publisher : Academic Press
Page : 0 pages
File Size : 45,9 Mb
Release : 2020-03-03
Category : Technology & Engineering
ISBN : 0128135034

Get Book

Bioactive Materials for Bone Regeneration by Jiang Chang,Xingdong Zhang,Kerong Dai Pdf

Bioactive Materials for Bone Regeneration summarizes research advances on the topic, including sections on the characteristics of biomaterial-induced microenvironments, interactions of bioactive materials with stem cells and tissues, and the immunomodulatory microenvironment induced by biomaterials and its effects on osteogenesis. As the regeneration of large-size bone tissue defects represents a significant clinical challenge, this book demonstrates how new biomaterials with specific chemical and physical characteristics may interact with the host and create a unique micro-environment that actively facilitates stem cell differentiation along a specific lineage, thus stimulating tissue regeneration.

Smart Biomaterials

Author : Mitsuhiro Ebara,Yohei Kotsuchibashi,Ravin Narain,Naokazu Idota,Young-Jin Kim,John M. Hoffman,Koichiro Uto,Takao Aoyagi
Publisher : Springer
Page : 380 pages
File Size : 41,6 Mb
Release : 2014-05-28
Category : Technology & Engineering
ISBN : 9784431544005

Get Book

Smart Biomaterials by Mitsuhiro Ebara,Yohei Kotsuchibashi,Ravin Narain,Naokazu Idota,Young-Jin Kim,John M. Hoffman,Koichiro Uto,Takao Aoyagi Pdf

This book provides comprehensive coverage of smart biomaterials and their potential applications, a field that is developing at a very rapid pace. Because smart biomaterials are an emerging class of biomaterials that respond to small changes in external stimuli with large discontinuous changes in their physical properties, they have been designed to act as an “on–off” switch for, among others, bio separation, immunoanalysis, drug delivery technologies, gene therapy, diagnostics, bio sensors and artificial muscles. After an introduction to the topic and the history of smart biomaterials, the author gives the reader an in-depth look at the properties, mechanics, and characterization of smart biomaterials including hydrogels, particles, assemblies, surfaces, fibers and conjugates. Information on the wide range of applications for these materials follows, including drug delivery, tissue engineering, diagnostics, biosensors, bio separation and actuators. In addition, recent advances in shape memory biomaterials as active components of medical devices are also presented.

Developments and Applications of Calcium Phosphate Bone Cements

Author : Changsheng Liu,Hongyan He
Publisher : Springer
Page : 624 pages
File Size : 43,7 Mb
Release : 2017-10-20
Category : Technology & Engineering
ISBN : 9789811059759

Get Book

Developments and Applications of Calcium Phosphate Bone Cements by Changsheng Liu,Hongyan He Pdf

This book presents a state-of-the-art review of the latest advances in developing calcium- phosphate bone cements and their applications. It covers the synthesis methods, characterization approaches, material modification and novel binders, as well as the fabrication technologies of calcium-phosphate-based biomaterials in regenerative medicine and their clinical applications. It also highlights methodologies for fabricating scaffolds, biofunctional surfaces/interfaces and subsequently modulating the host response to implantable/injectable materials, and integrates a series of discussions and insights into calcium-phosphate cements and constructs in bone regenerative medicine. As such, the book not only covers the fundamentals but also opens new avenues for meeting future challenges in research and clinical applications.

Bone Tissue Engineering

Author : Jeffrey O. Hollinger,Thomas A. Einhorn,Bruce Doll,Charles Sfeir
Publisher : CRC Press
Page : 500 pages
File Size : 40,8 Mb
Release : 2004-10-14
Category : Medical
ISBN : 9781135501914

Get Book

Bone Tissue Engineering by Jeffrey O. Hollinger,Thomas A. Einhorn,Bruce Doll,Charles Sfeir Pdf

Focusing on bone biology, Bone Tissue Engineering integrates basic sciences with tissue engineering. It includes contributions from world-renowned researchers and clinicians who discuss key topics such as different models and approaches to bone tissue engineering, as well as exciting clinical applications for patients. Divided into four sections, t

In Situ Tissue Regeneration

Author : Sang Jin Lee,Anthony Atala,James J Yoo
Publisher : Academic Press
Page : 458 pages
File Size : 52,9 Mb
Release : 2016-07-17
Category : Medical
ISBN : 9780128025000

Get Book

In Situ Tissue Regeneration by Sang Jin Lee,Anthony Atala,James J Yoo Pdf

In Situ Tissue Regeneration: Host Cell Recruitment and Biomaterial Design explores the body’s ability to mobilize endogenous stem cells to the site of injury and details the latest strategies developed for inducing and supporting the body’s own regenerating capacity. From the perspective of regenerative medicine and tissue engineering, this book describes the mechanism of host cell recruitment, cell sourcing, cellular and molecular roles in cell differentiation, navigational cues and niche signals, and a tissue-specific smart biomaterial system that can be applied to a wide range of therapies. The work is divided into four sections to provide a thorough overview and helpful hints for future discoveries: endogenous cell sources; biochemical and physical cues; smart biomaterial development; and applications. Explores the body’s ability to mobilize endogenous stem cells to the site of injury Details the latest strategies developed for inducing and supporting the body’s own regenerating capacity Presents smart biomaterials in cell-based tissue engineering applications—from the cell level to applications—in the first unified volume Features chapter authors and editors who are authorities in this emerging field Prioritizes a discussion of the future direction of smart biomaterials for in situ tissue regeneration, which will affect an emerging and lucrative industry

Biomaterial Based Approaches to Study the Tumour Microenvironment

Author : Jessica O Winter,Shreyas Rao
Publisher : Royal Society of Chemistry
Page : 376 pages
File Size : 40,5 Mb
Release : 2022-12-07
Category : Technology & Engineering
ISBN : 9781839166020

Get Book

Biomaterial Based Approaches to Study the Tumour Microenvironment by Jessica O Winter,Shreyas Rao Pdf

The tumour microenvironment is increasingly recognized as an important contributor to cancer progression and treatment. However, most cancer studies continue to be performed in 2D tissue culture dishes that do not capture the characteristics of the tumour niche. This book provides an introduction to the rich chemical, topographical, and mechanical cues in the tumour microenvironment and then introduces readers to bioengineering strategies, including scaffold design and synthesis, chemical signalling and delivery, and co-culture, microfluidics, and organ-on-a-chip tools that can be used to mimic tumour microenvironment features. This book also includes discussion of emerging imaging methods compatible with tumour microenvironment mimicking biomaterials and discusses applications of such models in immuno-oncology, metastasis, and drug screening. Edited by two leaders in the field, this book will appeal to graduate students and researchers working in biomaterials science, chemical and biomedical engineering departments.

Biomedical Nanostructures

Author : Kenneth Gonsalves,Craig Halberstadt,Cato T. Laurencin,Lakshmi Nair
Publisher : John Wiley & Sons
Page : 543 pages
File Size : 54,9 Mb
Release : 2007-11-09
Category : Science
ISBN : 9780470185827

Get Book

Biomedical Nanostructures by Kenneth Gonsalves,Craig Halberstadt,Cato T. Laurencin,Lakshmi Nair Pdf

Learn to Use Nanoscale Materials to Design Novel Biomedical Devices and Applications Discover how to take full advantage of nanoscale materials in the design and fabrication of leading-edge biomedical devices. The authors introduce you to a variety of possible clinical applications such as drug delivery, diagnostics, and cancer therapy. In addition, the authors explore the interface between micron and nanoscale materials for the development of applications such as tissue engineering. Finally, they examine the mechanisms of cell interactions with material surfaces through the use of nanotechnology-based material processing and characterization methods. The text's three sections highlight its interdisciplinary approach: * Part One: Nanostructure Fabrication * Part Two: Bio-Nano Interfaces * Part Three: Clinical Applications of Nanostructures Among the key topics covered are nanotechnology in tissue regeneration; biomolecular engineering; receptor-ligand interactions; cell-biomaterial interactions; nanomaterials in diagnostics, drug delivery, and cancer therapy; and nano- and micron-level engineering and fabrication. Throughout the text, clear examples guide you through the chemistry and the processing involved in designing and developing nanoscale materials for biomedical devices. Each chapter begins with an introduction and ends with a conclusion highlighting the key points. In addition, references at the end of the chapter help you expand your research on any individual topic. In summary, this book helps biomedical researchers and engineers understand the physical phenomena that occur at the nanoscale in order to design novel cell-based constructs for a wide range of applications.

Bone Research Protocols

Author : Miep H. Helfrich,Stuart H. Ralston
Publisher : Springer Science & Business Media
Page : 444 pages
File Size : 55,6 Mb
Release : 2008-02-01
Category : Medical
ISBN : 9781592593668

Get Book

Bone Research Protocols by Miep H. Helfrich,Stuart H. Ralston Pdf

The last decade has seen a tremendous advance in our understanding of bone biology. The genes responsible for the majority of rare inherited bone disorders have been identified and much progress has been made in the identification of genes in polygenic disorders such as Paget’s disease and complex multigene diseases such as osteoporosis. Transgenic technology has identified further genes, sometimes unexpectedly, with profound effects on bone. This wealth of new genetic information will undoubtedly lead to extensive cell biological studies to understand the mechanisms by which these gene products affect bone mass and bone strength. In Bone Research Protocols a catalogue of protocols has been assembled to perform such mechanistic studies. In the tradition of the Methods in Molecular Medicine series, the chapters are practical laboratory protocols that should enable the reader to carry out the techniques from scratch. To our knowledge this is the first time such a truly practical manual on well-established bone methods has been assembled, and this volume aims to be complementary to and follow on from the more theoretical Methods in Bone Biology, edited by Arnett and Henderson (1).

Immunomodulatory Biomaterials

Author : Stephen F. Badylak,Jennifer Elisseeff
Publisher : Woodhead Publishing
Page : 296 pages
File Size : 45,7 Mb
Release : 2021-07-30
Category : Medical
ISBN : 9780128214565

Get Book

Immunomodulatory Biomaterials by Stephen F. Badylak,Jennifer Elisseeff Pdf

Biomaterials have existed for millennia as mechanical replacement structures following disease or injury. Biomaterial design has changed markedly from structural support with an “inert immune profile as the primary objective to designs that elicit an integrative local tissue response and a pro-repair immune cell phenotype. Immunomodulatory Biomaterials: Regulating the Immune Response with Biomaterials to Affect Clinical Outcome offers a single, comprehensive reference on biomaterials for modulation of the host response, for materials scientists, tissue engineers and those working in regenerative medicine. This book details methods, materials and strategies designed to regulate the host immune response following surgical implantation and thus facilitate specific local cell infiltration and tissue deposition. There has been a dramatic transformation in our understanding of the role of the immune system, both innate and adaptive; these changes include recognition of the plasticity of immune cells, especially macrophages, cross-talk between the immune system and stem cells, and the necessity for in situ transition between inflammatory and regulatory immune cell phenotypes. The exploitation of these findings and the design and manufacture of new biomaterials is occurring at an astounding pace. There is currently no book directed at the interdisciplinary principles guiding the design, manufacture, testing, and clinical translation of biomaterials that proactively regulate the host tissue immune response. The challenge for academia, industry, and regulatory agencies to encourage innovation while assuring safety and maximizing efficacy has never been greater. Given the highly interdisciplinary requirements for the design, manufacture and use of immunomodulatory biomaterials, this book will prove a useful single resource across disciplines. Holistically covers the design, manufacture, testing, and clinical translation of biomaterials that proactively regulate the host tissue immune response Provides a single reference for understanding and utilizing the host response in biomaterials design An international collaboration of leading researchers in the field offering a novel insight into this fast-growing area

A Tissue Regeneration Approach to Bone and Cartilage Repair

Author : Hala Zreiqat,Colin R. Dunstan,Vicki Rosen
Publisher : Springer
Page : 257 pages
File Size : 41,9 Mb
Release : 2014-12-05
Category : Technology & Engineering
ISBN : 9783319132662

Get Book

A Tissue Regeneration Approach to Bone and Cartilage Repair by Hala Zreiqat,Colin R. Dunstan,Vicki Rosen Pdf

Reviewing exhaustively the current state of the art of tissue engineering strategies for regenerating bones and joints through the use of biomaterials, growth factors and stem cells, along with an investigation of the interactions between biomaterials, bone cells, growth factors and added stem cells and how together skeletal tissues can be optimised, this book serves to highlight the importance of biomaterials composition, surface topography, architectural and mechanical properties in providing support for tissue regeneration. Maximizing reader insights into the importance of the interplay of these attributes with bone cells (osteoblasts, osteocytes and osteoclasts) and cartilage cells (chondrocytes), this book also provides a detailed reference as to how key signalling pathways are activated. The contribution of growth factors to drive tissue regeneration and stem cell recruitment is discussed along with a review the potential and challenges of adult or embryonic mesenchymal stem cells to further enhance the formation of new bone and cartilage tissues. This book serves to demonstrate the interconnectedness of biomaterials, bone/cartilage cells, growth factors and stem cells in determining the regenerative process and thus the clinical outcome.